The mass of a proton is [tex]\(1.673 \times 10^{-24} \text{ g}\)[/tex]. The mass of a neutron is [tex]\(1.675 \times 10^{-24} \text{ g}\)[/tex]. The mass of the nucleus of a [tex]\({}^{56}\text{Fe}\)[/tex] atom is [tex]\(9.289 \times 10^{-23} \text{ g}\)[/tex]. What is the nuclear binding energy (in J) for a [tex]\({}^{56}\text{Fe}\)[/tex] nucleus? [tex]\(\left(c = 3.00 \times 10^8 \text{ m/s} \right)\)[/tex]

Select one:
a. [tex]\(8.36 \times 10^{-9}\)[/tex]
b. [tex]\(7.72 \times 10^{-11}\)[/tex]
c. [tex]\(6.07 \times 10^{6}\)[/tex]
d. [tex]\(2.57 \times 10^{-16}\)[/tex]
e. [tex]\(7.72 \times 10^{-8}\)[/tex]



Answer :

To find the nuclear binding energy of a [tex]\(^{56}_{26}\text{Fe}\)[/tex] (iron-56) nucleus, we need to follow these steps:

1. Determine the number of protons and neutrons:

The atomic number [tex]\(Z\)[/tex] of iron (Fe) is 26, which means there are 26 protons. The mass number [tex]\(A\)[/tex] is 56, which implies:
[tex]\[ \text{Number of neutrons} = A - Z = 56 - 26 = 30 \][/tex]

2. Calculate the total mass of the protons and neutrons:

- Mass of one proton ([tex]\(m_p\)[/tex]): [tex]\(1.673 \times 10^{-24}\)[/tex] g
- Mass of one neutron ([tex]\(m_n\)[/tex]): [tex]\(1.675 \times 10^{-24}\)[/tex] g

Total mass of protons:
[tex]\[ \text{Total mass of protons} = 26 \times 1.673 \times 10^{-24} \, \text{g} = 4.3498 \times 10^{-23} \, \text{g} \][/tex]

Total mass of neutrons:
[tex]\[ \text{Total mass of neutrons} = 30 \times 1.675 \times 10^{-24} \, \text{g} = 5.025 \times 10^{-23} \, \text{g} \][/tex]

Total mass of all nucleons (protons and neutrons):
[tex]\[ \text{Total mass of nucleons} = 4.3498 \times 10^{-23} \, \text{g} + 5.025 \times 10^{-23} \, \text{g} = 9.3748 \times 10^{-23} \, \text{g} \][/tex]

3. Calculate the mass defect:

The mass defect is the difference between the total mass of the nucleons and the actual mass of the nucleus.
[tex]\[ \text{Mass defect} = \text{Total mass of nucleons} - \text{Mass of nucleus} \][/tex]
[tex]\[ \text{Mass defect} = 9.3748 \times 10^{-23} \, \text{g} - 9.289 \times 10^{-23} \, \text{g} = 8.58 \times 10^{-25} \, \text{g} \][/tex]

4. Convert the mass defect to kilograms:

[tex]\[ 1 \, \text{g} = 1 \times 10^{-3} \, \text{kg} \][/tex]
[tex]\[ \text{Mass defect in kg} = 8.58 \times 10^{-25} \, \text{g} \times 1 \times 10^{-3} \, \frac{\text{kg}}{\text{g}} = 8.58 \times 10^{-28} \, \text{kg} \][/tex]

5. Calculate the nuclear binding energy using [tex]\(E = mc^2\)[/tex]:

[tex]\[ E = (\text{mass defect}) \times (c^2) \][/tex]
where [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex].
[tex]\[ E = 8.58 \times 10^{-28} \, \text{kg} \times (3.00 \times 10^8 \, \text{m/s})^2 \][/tex]
[tex]\[ E = 8.58 \times 10^{-28} \, \text{kg} \times 9 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ E = 77.22 \times 10^{-12} \, \text{J} \][/tex]
[tex]\[ E = 7.722 \times 10^{-11} \, \text{J} \][/tex]

Based on these calculations, the correct answer is:

b. [tex]\(7.72 \times 10^{-11}\)[/tex]