Solve for [tex]\( x \)[/tex]:

[tex]\[ 3x = 6x - 2 \][/tex]



Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
9 An equation of circle [tex]$M$[/tex] is [tex]$x^2+y^2+6 x-2 y+1=0$[/tex]. What are the coordinates of the center and the length of the radius of circle [tex]$M$[/tex] ?
-----

Response:

An equation of circle [tex]\( M \)[/tex] is

[tex]\[ x^2 + y^2 + 6x - 2y + 1 = 0 \][/tex]

What are the coordinates of the center and the length of the radius of circle [tex]\( M \)[/tex]?



Answer :

To find the center and the radius of the circle given by the equation [tex]\(x^2 + y^2 + 6x - 2y + 1 = 0\)[/tex], we can follow a step-by-step process involving the method known as "completing the square."

1. Rearrange the equation: First, we group the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms together:
[tex]\[ x^2 + 6x + y^2 - 2y + 1 = 0 \][/tex]

2. Complete the square for [tex]\(x\)[/tex]:
- Look at the [tex]\(x\)[/tex]-terms: [tex]\(x^2 + 6x\)[/tex]
- To complete the square, we add and subtract [tex]\(\left(\frac{6}{2}\right)^2 = 9\)[/tex]:
[tex]\[ x^2 + 6x + 9 - 9 \][/tex]
- This can be rewritten as:
[tex]\[ (x + 3)^2 - 9 \][/tex]

3. Complete the square for [tex]\(y\)[/tex]:
- Look at the [tex]\(y\)[/tex]-terms: [tex]\(y^2 - 2y\)[/tex]
- To complete the square, we add and subtract [tex]\(\left(\frac{-2}{2}\right)^2 = 1\)[/tex]:
[tex]\[ y^2 - 2y + 1 - 1 \][/tex]
- This can be rewritten as:
[tex]\[ (y - 1)^2 - 1 \][/tex]

4. Rewrite the original equation with these completed squares:
[tex]\[ (x + 3)^2 - 9 + (y - 1)^2 - 1 + 1 = 0 \][/tex]
Combining the constants, we get:
[tex]\[ (x + 3)^2 + (y - 1)^2 - 9 = 0 \][/tex]
Simplifying further, we obtain:
[tex]\[ (x + 3)^2 + (y - 1)^2 = 9 \][/tex]

5. Identify the center and radius:
- The equation [tex]\((x + 3)^2 + (y - 1)^2 = 9\)[/tex] is in standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
- Comparing, we see that [tex]\(h = -3\)[/tex] and [tex]\(k = 1\)[/tex], so the center of the circle is [tex]\((-3, 1)\)[/tex].
- The radius can be determined from [tex]\(r^2 = 9\)[/tex], so [tex]\(r = \sqrt{9} = 3\)[/tex].

Conclusion: The coordinates of the center of circle [tex]\(M\)[/tex] are [tex]\((-3, 1)\)[/tex], and the length of the radius is [tex]\(3\)[/tex].