Point [tex]$K$[/tex] is located at [tex]$(-7, -6)$[/tex], and point [tex]$L$[/tex] is located at [tex]$(1, 10)$[/tex]. What are the coordinates of point [tex]$N$[/tex]?

A. [tex]$(-1, 6)$[/tex]
B. [tex]$(-3, 2)$[/tex]
C. [tex]$(-5, -2)$[/tex]
D. [tex]$(-2, 6)$[/tex]



Answer :

To find the coordinates of the midpoint [tex]\(N \)[/tex] of points [tex]\(K\)[/tex] and [tex]\(L\)[/tex], we will use the midpoint formula. The midpoint formula for two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in a coordinate plane is given by:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the coordinates of point [tex]\(K\)[/tex] as [tex]\((-7, -6)\)[/tex] and point [tex]\(L\)[/tex] as [tex]\((1, 10)\)[/tex], let us apply the midpoint formula step-by-step.

1. Calculate the x-coordinate of the midpoint:
[tex]\[ x_{\text{mid}} = \frac{x_1 + x_2}{2} = \frac{-7 + 1}{2} = \frac{-6}{2} = -3 \][/tex]

2. Calculate the y-coordinate of the midpoint:
[tex]\[ y_{\text{mid}} = \frac{y_1 + y_2}{2} = \frac{-6 + 10}{2} = \frac{4}{2} = 2 \][/tex]

Therefore, the coordinates of point [tex]\( N \)[/tex] are [tex]\( (-3, 2) \)[/tex].

So, the correct answer is:
[tex]\[ \boxed{(-3, 2)} \][/tex]