What is the mean of the distribution?

\begin{tabular}{|l|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 8 & 12 & 14 & 17 & 5 \\
\hline
[tex]$P(x)$[/tex] & [tex]$20\%$[/tex] & [tex]$30\%$[/tex] & [tex]$20\%$[/tex] & [tex]$8\%$[/tex] & [tex]$22\%$[/tex] \\
\hline
\end{tabular}

Select one:
A. 11.2
B. 10.46
C. 0.0002
D. 11.02



Answer :

To find the mean of a probability distribution, we use the formula for the expected value:

[tex]\[ \mu = \sum (x \cdot P(x)) \][/tex]

where [tex]\( x \)[/tex] represents each value of the random variable, and [tex]\( P(x) \)[/tex] represents the corresponding probability.

Given the values and their probabilities from the distribution table:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 8 & 12 & 14 & 17 & 5 \\ \hline P(x) & 0.20 & 0.30 & 0.20 & 0.08 & 0.22 \\ \hline \end{array} \][/tex]

we calculate the mean as follows:

1. Multiply each value by its probability:
- [tex]\( 8 \times 0.20 = 1.60 \)[/tex]
- [tex]\( 12 \times 0.30 = 3.60 \)[/tex]
- [tex]\( 14 \times 0.20 = 2.80 \)[/tex]
- [tex]\( 17 \times 0.08 = 1.36 \)[/tex]
- [tex]\( 5 \times 0.22 = 1.10 \)[/tex]

2. Sum these products:
[tex]\[ 1.60 + 3.60 + 2.80 + 1.36 + 1.10 = 10.46 \][/tex]

Therefore, the mean of the distribution is:

[tex]\[ \mu = 10.46 \][/tex]

The correct answer is:

[tex]\[\text{10.46}\][/tex]