Consider the parametric equations [tex]x = 4 \cos(t) - 3[/tex] and [tex]y = 5 \sin(t) + 2[/tex]. What is the rectangular form?

A. [tex]\frac{(x-3)^2}{4} + \frac{(y+2)^2}{5} = 1[/tex]
B. [tex]\frac{(x+3)^2}{4} + \frac{(y-2)^2}{5} = 1[/tex]
C. [tex]\frac{(x+3)^2}{16} + \frac{(y-2)^2}{25} = 1[/tex]
D. [tex]\frac{(x-3)^2}{16} + \frac{(y+2)^2}{25} = 1[/tex]



Answer :

To find the rectangular form of the given parametric equations [tex]\( x = 4 \cos(t) - 3 \)[/tex] and [tex]\( y = 5 \sin(t) + 2 \)[/tex], we follow these steps:

1. Isolate the trigonometric functions [tex]\(\cos(t)\)[/tex] and [tex]\(\sin(t)\)[/tex]:
[tex]\[ \cos(t) = \frac{x + 3}{4} \][/tex]
[tex]\[ \sin(t) = \frac{y - 2}{5} \][/tex]

2. Apply the Pythagorean identity which states:
[tex]\[ \sin^2(t) + \cos^2(t) = 1 \][/tex]

3. Substitute [tex]\(\cos(t)\)[/tex] and [tex]\(\sin(t)\)[/tex] with their expressions from step 1:
[tex]\[ \left( \frac{y - 2}{5} \right)^2 + \left( \frac{x + 3}{4} \right)^2 = 1 \][/tex]

4. Rewrite the equation in standard form by squaring the terms in the equation:
[tex]\[ \left( \frac{y - 2}{5} \right)^2 = \frac{(y - 2)^2}{25} \][/tex]
[tex]\[ \left( \frac{x + 3}{4} \right)^2 = \frac{(x + 3)^2}{16} \][/tex]

So, the equation becomes:
[tex]\[ \frac{(y - 2)^2}{25} + \frac{(x + 3)^2}{16} = 1 \][/tex]

5. Reorder the terms to match the standard form of an ellipse equation [tex]\(\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\)[/tex]. From the equation we derived:
[tex]\[ \frac{(x + 3)^2}{16} + \frac{(y - 2)^2}{25} = 1 \][/tex]

From these steps, the correct rectangular form of the given parametric equations is:
[tex]\[ \boxed{\frac{(x+3)^2}{16}+\frac{(y-2)^2}{25}=1} \][/tex]