Answer :

To evaluate the expression [tex]\(8^{\frac{8}{3}}\)[/tex], we can follow these steps:

1. Express the Base as a Power of a Smaller Prime Number:

First, recognize that 8 can be written as a power of 2:
[tex]\[ 8 = 2^3 \][/tex]

2. Rewrite the Original Expression:

Substitute [tex]\(2^3\)[/tex] for 8 in the original expression:
[tex]\[ 8^{\frac{8}{3}} = (2^3)^{\frac{8}{3}} \][/tex]

3. Apply the Power of a Power Rule:

When raising a power to another power, we multiply the exponents:
[tex]\[ (2^3)^{\frac{8}{3}} = 2^{3 \cdot \frac{8}{3}} \][/tex]

4. Simplify the Exponent:

Simplify the multiplication in the exponent:
[tex]\[ 3 \cdot \frac{8}{3} = 8 \][/tex]

Therefore:
[tex]\[ 2^{3 \cdot \frac{8}{3}} = 2^8 \][/tex]

5. Evaluate [tex]\(2^8\)[/tex]:

Calculate [tex]\(2^8\)[/tex] (since [tex]\(2^8 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2\)[/tex]):
[tex]\[ 2^8 = 256 \][/tex]

6. Final Result:

Thus, the value of [tex]\(8^{\frac{8}{3}}\)[/tex] is:
[tex]\[ 8^{\frac{8}{3}} = 256 \][/tex]

Hence, the evaluated result is:
[tex]\[ 8^{\frac{8}{3}} = 255.99999999999991 \][/tex]