Which equation represents a circle with a center at [tex]$(-4, 9)$[/tex] and a diameter of 10 units?

A. [tex]\((x-9)^2 + (y+4)^2 = 25\)[/tex]

B. [tex]\((x+4)^2 + (y-9)^2 = 25\)[/tex]

C. [tex]\((x-9)^2 + (y+4)^2 = 100\)[/tex]

D. [tex]\((x+4)^2 + (y-9)^2 = 100\)[/tex]



Answer :

To determine which equation represents a circle with a given center and diameter, we follow these steps:

1. Identify the center coordinates: The center of the circle is [tex]\((-4, 9)\)[/tex].

2. Determine the radius: The radius of a circle is half the diameter. The diameter given is 10 units.
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} = \frac{10}{2} = 5 \text{ units} \][/tex]

3. Calculate the square of the radius: This is needed for the standard equation of a circle.
[tex]\[ \text{Radius squared} = 5^2 = 25 \][/tex]

4. Form the equation of the circle: The standard form of the equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substituting [tex]\(h = -4\)[/tex], [tex]\(k = 9\)[/tex], and [tex]\(r^2 = 25\)[/tex], the equation becomes:
[tex]\[ (x - (-4))^2 + (y - 9)^2 = 25 \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ (x + 4)^2 + (y - 9)^2 = 25 \][/tex]

Now, we compare this derived equation with the given choices:

1. [tex]\((x-9)^2+(y+4)^2=25\)[/tex]
2. [tex]\((x+4)^2+(y-9)^2=25\)[/tex]
3. [tex]\((x-9)^2+(y+4)^2=100\)[/tex]
4. [tex]\((x+4)^2+(y-9)^2=100\)[/tex]

The correct equation is:
[tex]\[ (x + 4)^2 + (y - 9)^2 = 25 \][/tex]

Thus, the correct choice is:
[tex]\[ (x + 4)^2 + (y - 9)^2 = 25 \][/tex]