Answer :

To evaluate the limit [tex]\(\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4}\)[/tex] using L'Hôpital's Rule, we follow these steps:

1. Check the form of the limit:

First, substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[ f(x) = x^2 + 2x - 3 \quad \text{and} \quad g(x) = x^2 + 3x - 4. \][/tex]

[tex]\[ f(1) = 1^2 + 2(1) - 3 = 1 + 2 - 3 = 0, \][/tex]
[tex]\[ g(1) = 1^2 + 3(1) - 4 = 1 + 3 - 4 = 0. \][/tex]

Since both the numerator and denominator evaluate to 0 at [tex]\( x = 1 \)[/tex], this is an indeterminate form [tex]\( \frac{0}{0} \)[/tex]. This suggests that L'Hôpital's Rule can be applied.

2. Differentiate numerator and denominator:

Differentiate the numerator [tex]\( f(x) = x^2 + 2x - 3 \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^2 + 2x - 3) = 2x + 2. \][/tex]

Differentiate the denominator [tex]\( g(x) = x^2 + 3x - 4 \)[/tex]:
[tex]\[ g'(x) = \frac{d}{dx}(x^2 + 3x - 4) = 2x + 3. \][/tex]

3. Apply L'Hôpital's Rule:

Substitute [tex]\( x = 1 \)[/tex] in the derivatives:
[tex]\[ \lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4} = \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{2x + 2}{2x + 3}. \][/tex]

Now, substitute [tex]\( x = 1 \)[/tex] into the simplified expression:
[tex]\[ \frac{2(1) + 2}{2(1) + 3} = \frac{2 + 2}{2 + 3} = \frac{4}{5}. \][/tex]

4. Conclusion:

The evaluated limit is:
[tex]\[ \lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4} = \frac{4}{5}. \][/tex]

Hence, the limit [tex]\(\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4}\)[/tex] evaluates to [tex]\(\frac{4}{5}\)[/tex].