Answer :

Sure, let's solve the given question step-by-step.

### Part (b) [tex]$\frac{5}{6}+\frac{3}{4}+4$[/tex]

1. Convert the fractions to decimals:
- First, we need to convert the fractions [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex] into their decimal equivalents.

2. Convert [tex]\(\frac{5}{6}\)[/tex] to a decimal:
- [tex]\(\frac{5}{6} \approx 0.8333333333333334 \)[/tex]

3. Convert [tex]\(\frac{3}{4}\)[/tex] to a decimal:
- [tex]\(\frac{3}{4} = 0.75 \)[/tex]

4. Sum up the values including the integer:
- Now, add the values of the converted fractions and the integer [tex]\(4\)[/tex]:
[tex]\[ 0.8333333333333334 + 0.75 + 4 = 5.583333333333334 \][/tex]

So, the value of the expression [tex]\(\frac{5}{6} + \frac{3}{4} + 4\)[/tex] is:
[tex]\[ 5.583333333333334 \][/tex]

### Following: (b) [tex]$5 \underline{3}-2 \underline{2}$[/tex]

Unfortunately, the notation [tex]\(5 \underline{3}-2 \underline{2}\)[/tex] is not entirely clear from the context provided. It seems like it might refer to some specific operation or annotation that is not common in conventional arithmetic.

If you can provide more context or clarification on this notation, I'd be happy to help solve it further. However, based on the provided context, it cannot be simplified or solved without additional information on the notation used.