Consider the following hypothesis test:

[tex]\[
\begin{array}{l}
H_0: \mu \leq 12 \\
H_a: \mu \ \textgreater \ 12
\end{array}
\][/tex]

A sample of 25 provided a sample mean [tex]\(\bar{x} = 14\)[/tex] and a sample standard deviation [tex]\(s = 4.32\)[/tex].

a. Compute the value of the test statistic (to 2 decimals).
[tex]\[\square\][/tex]

b. Use the [tex]\(t\)[/tex] distribution table (Table 2 in Appendix B) to compute a range for the [tex]\(p\)[/tex]-value.

The [tex]\(p\)[/tex]-value is [tex]\(\square\)[/tex] between 0.01 and 0.025 [tex]\(\square\)[/tex]

Answer the next three questions using the critical value approach.

c. Using [tex]\(\alpha = 0.05\)[/tex], what is the critical value for the test statistic? (to 3 decimals)
[tex]\[\square\][/tex]



Answer :

To determine whether we reject the null hypothesis [tex]\( H_0: \mu \leq 12 \)[/tex] in favor of the alternative hypothesis [tex]\( H_a: \mu > 12 \)[/tex], we will follow the outlined steps.

### Given Values:
- Sample size ([tex]\( n \)[/tex]): 25
- Sample mean ([tex]\( \bar{x} \)[/tex]): 14
- Sample standard deviation ([tex]\( s \)[/tex]): 4.32
- Population mean ([tex]\( \mu \)[/tex]): 12

### a. Compute the value of the test statistic
To compute the test statistic for a one-sample t-test, use the formula:
[tex]\[ t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \][/tex]
Substituting the values:
[tex]\[ t = \frac{14 - 12}{4.32 / \sqrt{25}} \][/tex]
[tex]\[ t = \frac{2}{4.32 / 5} \][/tex]
[tex]\[ t = \frac{2}{0.864} \approx 2.31 \][/tex]
The value of the test statistic is [tex]\( t \approx 2.31 \)[/tex].

### b. Use the [tex]\( t \)[/tex] distribution table to compute a range for the [tex]\( p \)[/tex]-value
To find the range for the [tex]\( p \)[/tex]-value, we need the degrees of freedom (df), calculated as:
[tex]\[ df = n - 1 = 25 - 1 = 24 \][/tex]
Looking at the [tex]\( t \)[/tex]-distribution table for 24 degrees of freedom, we find the range that includes the test statistic [tex]\( t = 2.31 \)[/tex]:
- For a one-tailed test with [tex]\( t \)[/tex] around 2.31, the corresponding [tex]\( p \)[/tex]-value falls between 0.01 and 0.025.

Thus, the [tex]\( p \)[/tex]-value is between 0.01 and 0.025.

### c. Using [tex]\( \alpha = 0.05 \)[/tex], what is the critical value for the test statistic?
For [tex]\( \alpha = 0.05 \)[/tex] in a one-tailed test with 24 degrees of freedom, we find the critical value from the [tex]\( t \)[/tex]-distribution table:
- The critical value for [tex]\( \alpha = 0.05 \)[/tex] and [tex]\( df = 24 \)[/tex] is approximately 1.711.

### Summary:
a. The value of the test statistic is [tex]\( 2.31 \)[/tex].

b. The [tex]\( p \)[/tex]-value is between 0.01 and 0.025.

c. The critical value for the test statistic at [tex]\( \alpha = 0.05 \)[/tex] is [tex]\( 1.711 \)[/tex].