Create a function to represent the point [tex]$(x, y)$[/tex] being reflected across the [tex]$y$[/tex]-axis.

[tex]F(x, y) = (-x, y)[/tex]



Answer :

To create a function that represents the reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\( y \)[/tex]-axis, follow these steps:

1. Understand the Reflection Rule: When reflecting a point [tex]\((x, y)\)[/tex] across the [tex]\( y \)[/tex]-axis, the [tex]\( x \)[/tex]-coordinate changes sign (i.e., it is negated), while the [tex]\( y \)[/tex]-coordinate remains the same.

So, if you have a point [tex]\((x, y)\)[/tex], its reflection across the [tex]\( y \)[/tex]-axis will be [tex]\((-x, y)\)[/tex].

2. Define the Function: We need to define a function [tex]\( F \)[/tex] that takes a point [tex]\((x, y)\)[/tex] and outputs the reflected point [tex]\((-x, y)\)[/tex].

[tex]\[ F(x, y) = (-x, y) \][/tex]

Let's walk through the process with a specific example to make it clearer:

### Example
Given a point [tex]\((3, 4)\)[/tex]:

1. Identify the coordinates: [tex]\( x = 3 \)[/tex] and [tex]\( y = 4 \)[/tex].
2. Apply the reflection rule:
- The [tex]\( x \)[/tex]-coordinate is negated: [tex]\( 3 \)[/tex] becomes [tex]\(-3\)[/tex].
- The [tex]\( y \)[/tex]-coordinate remains the same: [tex]\( 4 \)[/tex] stays as [tex]\( 4 \)[/tex].

Therefore, the reflected point is [tex]\((-3, 4)\)[/tex].

### Formal Function Definition
To generalize, the function [tex]\( F(x, y) \)[/tex] can be written as:

[tex]\[ F(x, y) = (-x, y) \][/tex]

So, using the function:

- For a general point [tex]\((x, y)\)[/tex]:
[tex]\[ F(x, y) = (-x, y) \][/tex]

- For the specific point [tex]\((3, 4)\)[/tex]:
[tex]\[ F(3, 4) = (-3, 4) \][/tex]

Thus, the reflected point of [tex]\((3, 4)\)[/tex] across the [tex]\( y \)[/tex]-axis is [tex]\((-3, 4)\)[/tex].