Solve the equation by completing the square. Round to the nearest hundredth if necessary.

[tex]\[ 3x^2 - 6x - 24 = 0 \][/tex]

A. [tex]\(2.65, 3\)[/tex]

B. [tex]\(-30, 3.6\)[/tex]

C. [tex]\(7.58, -1.58\)[/tex]

D. [tex]\(4, -2\)[/tex]



Answer :

To solve the quadratic equation [tex]\(3x^2 - 6x - 24 = 0\)[/tex] by completing the square, follow these steps:

1. Move the constant term to the right side of the equation:
[tex]\[ 3x^2 - 6x = 24 \][/tex]

2. Divide every term by the coefficient of [tex]\(x^2\)[/tex] (which is 3):
[tex]\[ \frac{3x^2}{3} - \frac{6x}{3} = \frac{24}{3} \][/tex]
[tex]\[ x^2 - 2x = 8 \][/tex]

3. Add and subtract the square of half the coefficient of [tex]\(x\)[/tex] inside the equation:
The coefficient of [tex]\(x\)[/tex] is -2, so half of -2 is -1, and the square of -1 is 1. Add and subtract this square inside the equation:
[tex]\[ x^2 - 2x + 1 - 1 = 8 \][/tex]
[tex]\[ (x - 1)^2 - 1 = 8 \][/tex]

4. Simplify and solve for [tex]\((x - 1)^2\)[/tex]:
[tex]\[ (x - 1)^2 - 1 + 1 = 8 + 1 \][/tex]
[tex]\[ (x - 1)^2 = 9 \][/tex]

5. Take the square root of both sides to solve for [tex]\(x - 1\)[/tex]:
[tex]\[ x - 1 = \pm \sqrt{9} \][/tex]
[tex]\[ x - 1 = 3 \quad \text{or} \quad x - 1 = -3 \][/tex]

6. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 3 + 1 = 4 \quad \text{or} \quad x = -3 + 1 = -2 \][/tex]

Thus, the solutions to the equation [tex]\(3x^2 - 6x - 24 = 0\)[/tex] are:
[tex]\[ x = 4 \quad \text{and} \quad x = -2 \][/tex]

These match the solution pair given in the problem, which is [tex]\((4, -2)\)[/tex].