Calculate the pH of a 0.02 M solution of the weak acid, HA.

[tex]\[
\begin{array}{ll}
Ka = 2.46 \times 10^{-4} \\
HA + H_2O & \leftrightarrow H_3O^+ + A^-
\end{array}
\][/tex]



Answer :

To calculate the pH of a 0.02 M solution of the weak acid, HA, we need to follow these steps:

1. Write the dissociation equation:
[tex]\[ HA \rightleftharpoons H^+ + A^- \][/tex]

2. Set up the expression for the acid dissociation constant (Ka):
[tex]\[ Ka = \frac{[H^+][A^-]}{[HA]} \][/tex]

Given:
[tex]\[ Ka = 2.46 \times 10^{-4} \][/tex]
Initial concentration of HA:
[tex]\[ [HA] = 0.02 \, \text{M} \][/tex]

3. Define the equilibrium concentrations:
Assume that the initial concentration of HA is roughly equal to its concentration at equilibrium, and let [tex]\( x \)[/tex] represent the concentration of [tex]\( H^+ \)[/tex] and [tex]\( A^- \)[/tex] at equilibrium. Therefore:
[tex]\[ [H^+] = x \][/tex]
[tex]\[ [A^-] = x \][/tex]
[tex]\[ [HA] \approx 0.02 - x \approx 0.02 \, (\text{since } x \text{ will be very small}) \][/tex]

4. Substitute the values into the Ka expression:
[tex]\[ Ka = \frac{x \cdot x}{0.02} = \frac{x^2}{0.02} \][/tex]

5. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2.46 \times 10^{-4} = \frac{x^2}{0.02} \][/tex]
[tex]\[ x^2 = 2.46 \times 10^{-4} \times 0.02 \][/tex]
[tex]\[ x^2 = 4.92 \times 10^{-6} \][/tex]
[tex]\[ x = \sqrt{4.92 \times 10^{-6}} \][/tex]
[tex]\[ x \approx 0.00222 \][/tex]

This value of [tex]\( x \)[/tex] represents the concentration of [tex]\( H^+ \)[/tex] ions in the solution.

6. Calculate the pH:
[tex]\[ \text{pH} = -\log [H^+] \][/tex]
[tex]\[ \text{pH} = -\log (0.00222) \][/tex]
[tex]\[ \text{pH} \approx 2.65 \][/tex]

So, the pH of a 0.02 M solution of the weak acid HA is approximately 2.65.