Answer :
To calculate the pH of a 0.02 M solution of the weak acid, HA, we need to follow these steps:
1. Write the dissociation equation:
[tex]\[ HA \rightleftharpoons H^+ + A^- \][/tex]
2. Set up the expression for the acid dissociation constant (Ka):
[tex]\[ Ka = \frac{[H^+][A^-]}{[HA]} \][/tex]
Given:
[tex]\[ Ka = 2.46 \times 10^{-4} \][/tex]
Initial concentration of HA:
[tex]\[ [HA] = 0.02 \, \text{M} \][/tex]
3. Define the equilibrium concentrations:
Assume that the initial concentration of HA is roughly equal to its concentration at equilibrium, and let [tex]\( x \)[/tex] represent the concentration of [tex]\( H^+ \)[/tex] and [tex]\( A^- \)[/tex] at equilibrium. Therefore:
[tex]\[ [H^+] = x \][/tex]
[tex]\[ [A^-] = x \][/tex]
[tex]\[ [HA] \approx 0.02 - x \approx 0.02 \, (\text{since } x \text{ will be very small}) \][/tex]
4. Substitute the values into the Ka expression:
[tex]\[ Ka = \frac{x \cdot x}{0.02} = \frac{x^2}{0.02} \][/tex]
5. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2.46 \times 10^{-4} = \frac{x^2}{0.02} \][/tex]
[tex]\[ x^2 = 2.46 \times 10^{-4} \times 0.02 \][/tex]
[tex]\[ x^2 = 4.92 \times 10^{-6} \][/tex]
[tex]\[ x = \sqrt{4.92 \times 10^{-6}} \][/tex]
[tex]\[ x \approx 0.00222 \][/tex]
This value of [tex]\( x \)[/tex] represents the concentration of [tex]\( H^+ \)[/tex] ions in the solution.
6. Calculate the pH:
[tex]\[ \text{pH} = -\log [H^+] \][/tex]
[tex]\[ \text{pH} = -\log (0.00222) \][/tex]
[tex]\[ \text{pH} \approx 2.65 \][/tex]
So, the pH of a 0.02 M solution of the weak acid HA is approximately 2.65.
1. Write the dissociation equation:
[tex]\[ HA \rightleftharpoons H^+ + A^- \][/tex]
2. Set up the expression for the acid dissociation constant (Ka):
[tex]\[ Ka = \frac{[H^+][A^-]}{[HA]} \][/tex]
Given:
[tex]\[ Ka = 2.46 \times 10^{-4} \][/tex]
Initial concentration of HA:
[tex]\[ [HA] = 0.02 \, \text{M} \][/tex]
3. Define the equilibrium concentrations:
Assume that the initial concentration of HA is roughly equal to its concentration at equilibrium, and let [tex]\( x \)[/tex] represent the concentration of [tex]\( H^+ \)[/tex] and [tex]\( A^- \)[/tex] at equilibrium. Therefore:
[tex]\[ [H^+] = x \][/tex]
[tex]\[ [A^-] = x \][/tex]
[tex]\[ [HA] \approx 0.02 - x \approx 0.02 \, (\text{since } x \text{ will be very small}) \][/tex]
4. Substitute the values into the Ka expression:
[tex]\[ Ka = \frac{x \cdot x}{0.02} = \frac{x^2}{0.02} \][/tex]
5. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2.46 \times 10^{-4} = \frac{x^2}{0.02} \][/tex]
[tex]\[ x^2 = 2.46 \times 10^{-4} \times 0.02 \][/tex]
[tex]\[ x^2 = 4.92 \times 10^{-6} \][/tex]
[tex]\[ x = \sqrt{4.92 \times 10^{-6}} \][/tex]
[tex]\[ x \approx 0.00222 \][/tex]
This value of [tex]\( x \)[/tex] represents the concentration of [tex]\( H^+ \)[/tex] ions in the solution.
6. Calculate the pH:
[tex]\[ \text{pH} = -\log [H^+] \][/tex]
[tex]\[ \text{pH} = -\log (0.00222) \][/tex]
[tex]\[ \text{pH} \approx 2.65 \][/tex]
So, the pH of a 0.02 M solution of the weak acid HA is approximately 2.65.