To find [tex]\( f(g(9)) \)[/tex]:
1. First, we need to understand the function [tex]\( f(g(x)) = 2x - 1 \)[/tex].
2. To find [tex]\( f(g(9)) \)[/tex], substitute [tex]\( x = 9 \)[/tex] into the function.
3. So, replace [tex]\( x \)[/tex] with [tex]\( 9 \)[/tex] in the equation [tex]\( f(g(x)) = 2x - 1 \)[/tex]:
[tex]\[
f(g(9)) = 2(9) - 1
\][/tex]
4. Perform the multiplication first:
[tex]\[
f(g(9)) = 18 - 1
\][/tex]
5. Then, subtract 1 from 18:
[tex]\[
f(g(9)) = 17
\][/tex]
Therefore, [tex]\( f(g(9)) = 17 \)[/tex].