Which expression is equivalent to [tex]\frac{-9 x^{-1} y^{-9}}{-15 x^5 y^{-3}}[/tex]? Assume [tex]x \neq 0, y \neq 0[/tex].

A. [tex]\frac{3}{5 x^5 y^3}[/tex]

B. [tex]\frac{3}{5 x^6 y^6}[/tex]

C. [tex]\frac{5}{3 x^5 y^3}[/tex]

D. [tex]\frac{5}{3 x^6 y^6}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\frac{-9 x^{-1} y^{-9}}{-15 x^5 y^{-3}}\)[/tex], we will follow these steps:

1. Combine the coefficients:
The coefficients in the numerator and the denominator are [tex]\(-9\)[/tex] and [tex]\(-15\)[/tex] respectively.

[tex]\[ \frac{-9}{-15} = \frac{9}{15} = \frac{3}{5} \][/tex]

2. Simplify the exponent of [tex]\(x\)[/tex]:
In the numerator, [tex]\(x\)[/tex] has an exponent of [tex]\(-1\)[/tex], and in the denominator, [tex]\(x\)[/tex] has an exponent of [tex]\(5\)[/tex]. When dividing, we subtract the exponent in the denominator from the exponent in the numerator:

[tex]\[ x^{-1 - 5} = x^{-6} \][/tex]

3. Simplify the exponent of [tex]\(y\)[/tex]:
In the numerator, [tex]\(y\)[/tex] has an exponent of [tex]\(-9\)[/tex], and in the denominator, [tex]\(y\)[/tex] has an exponent of [tex]\(-3\)[/tex]. When dividing, we subtract the exponent in the denominator from the exponent in the numerator:

[tex]\[ y^{-9 - (-3)} = y^{-9 + 3} = y^{-6} \][/tex]

Putting it all together, the expression simplifies to:

[tex]\[ \frac{3}{5 \cdot x^6 \cdot y^6} \][/tex]

Thus, the equivalent expression is:

[tex]\[ \boxed{\frac{3}{5 x^6 y^6}} \][/tex]

Other Questions