Find an equation equivalent to [tex]r = 7 \csc \theta[/tex] in rectangular coordinates and describe the graph of the equation.

A. [tex]\sqrt{x^2 + y^2} = 7[/tex]; circle with radius 7

B. [tex]y = 7[/tex]; straight horizontal line

C. [tex]y \cdot \sqrt{x^2 + y^2} = 7[/tex]; circle with radius 7

D. [tex]x = 7[/tex]; straight vertical line

Please select the best answer from the choices provided:

A

B

C

D



Answer :

To find an equation equivalent to the polar equation [tex]\( r = 7 \csc \theta \)[/tex] in rectangular coordinates and describe the graph of the equation, let's follow these steps:

1. Recall the polar to rectangular conversion formulas:
- [tex]\( r = \sqrt{x^2 + y^2} \)[/tex]
- [tex]\(\csc \theta = \frac{1}{\sin \theta}\)[/tex]
- [tex]\(\sin \theta = \frac{y}{r}\)[/tex]

2. Rewrite the given polar equation [tex]\( r = 7 \csc \theta \)[/tex]:
[tex]\[ r = 7 \cdot \frac{1}{\sin \theta} \][/tex]
Substituting [tex]\(\sin \theta = \frac{y}{r}\)[/tex], we have:
[tex]\[ r = \frac{7}{\frac{y}{r}} \implies r = \frac{7r}{y} \][/tex]

3. Simplify the equation:
[tex]\[ r^2 = 7r / y \implies r^2 y = 7r \][/tex]
Since [tex]\(r \neq 0\)[/tex], we can divide both sides by [tex]\(r\)[/tex]:
[tex]\[ r y = 7 \][/tex]

4. Convert [tex]\(r\)[/tex] to rectangular coordinates:
[tex]\[ \sqrt{x^2 + y^2} \cdot y = 7 \][/tex]

Hence, the rectangular form of the equation is:
[tex]\[ y \cdot \sqrt{x^2 + y^2} = 7 \][/tex]

This equation represents a circle centered at [tex]\((0, \frac{7}{2})\)[/tex] with a radius of [tex]\(\frac{7}{2}\)[/tex]. Therefore, the graph of the equation is correctly described by option C.

Correct answer: C