To determine the value of [tex]\((h \circ h)(10)\)[/tex], let's carefully follow the steps needed to solve this problem.
Step 1: Define the function [tex]\( h(x) \)[/tex].
Given [tex]\( h(x) = 6 - x \)[/tex].
Step 2: Evaluate the inner function [tex]\( h(10) \)[/tex].
[tex]\[ h(10) = 6 - 10 = -4 \][/tex]
Step 3: Use the result from Step 2 to find [tex]\( h(h(10)) \)[/tex].
We substitute [tex]\( x = -4 \)[/tex] into the function [tex]\( h \)[/tex].
[tex]\[ h(-4) = 6 - (-4) = 6 + 4 = 10 \][/tex]
Thus, the value of [tex]\((h \circ h)(10)\)[/tex] is [tex]\( 10 \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{10} \][/tex]