Answer :

Let's find the value of [tex]\( k \)[/tex] given the equations [tex]\( \cos \theta = \sqrt{3k} \)[/tex] and [tex]\( \sec \theta = 2 \)[/tex].

We start with the relationship between cosine and secant:
[tex]\[ \text{sec}(\theta) = \frac{1}{\cos(\theta)} \][/tex]

Since [tex]\( \sec \theta = 2 \)[/tex], we can write:
[tex]\[ 2 = \frac{1}{\cos(\theta)} \][/tex]

Solving for [tex]\(\cos(\theta)\)[/tex], we get:
[tex]\[ \cos(\theta) = \frac{1}{2} \][/tex]

Now, we also have the equation:
[tex]\[ \cos(\theta) = \sqrt{3k} \][/tex]

We can substitute [tex]\(\cos(\theta) = \frac{1}{2}\)[/tex] into the equation:
[tex]\[ \frac{1}{2} = \sqrt{3k} \][/tex]

Next, we square both sides to eliminate the square root:
[tex]\[ \left(\frac{1}{2}\right)^2 = (\sqrt{3k})^2 \][/tex]

This simplifies to:
[tex]\[ \frac{1}{4} = 3k \][/tex]

Finally, we solve for [tex]\( k \)[/tex] by dividing both sides by 3:
[tex]\[ k = \frac{1}{4 \times 3} \][/tex]

[tex]\[ k = \frac{1}{12} \][/tex]

Therefore, the value of [tex]\( k \)[/tex] is:
[tex]\[ k = 0.08333333333333333 \][/tex]