Example:
[tex]\[
\begin{aligned}
f(g) & = 3x - 2 \\
& = 3(x + 1) - 2 \\
& = 3x + 3 - 2 \\
& = 3x + 1
\end{aligned}
\][/tex]

Assignment:
1.
2.



Answer :

Sure, let's break down the process step-by-step in detail.

Given the function [tex]\( f(g) \)[/tex]:

1. Initially, we have the expression:
[tex]\[ f(g) = 3x - 2 \][/tex]

2. Next, we substitute [tex]\( g \)[/tex] with [tex]\( x + 1 \)[/tex] because [tex]\( g = x + 1 \)[/tex]. Therefore, the expression becomes:
[tex]\[ f(g) = 3(x + 1) - 2 \][/tex]

3. Now, let's simplify the expression inside the parentheses:
[tex]\[ f(g) = 3x + 3 - 2 \][/tex]

4. Finally, we combine like terms to get the simplified expression:
[tex]\[ f(g) = 3x + 1 \][/tex]

Thus, the final result of [tex]\( f(g) \)[/tex] is [tex]\( 3x + 1 \)[/tex].

To summarize, here are the steps:

[tex]\[ \begin{aligned} f(g) & = 3x - 2 \\ & = 3(x + 1) - 2 \\ & = 3x + 3 - 2 \\ & = 3x + 1 \end{aligned} \][/tex]

This concludes the step-by-step solution.