Answer :
Sure! Let’s find the solutions for the given exponential expressions step by step.
### Part b
Consider the expression:
[tex]\[ \left(\frac{1}{27}\right)^2 \times 3^2 \times \frac{1}{3} \][/tex]
1. Evaluate [tex]\(\left(\frac{1}{27}\right)^2\)[/tex]:
[tex]\[ \left(\frac{1}{27}\right)^2 = \frac{1}{27 \times 27} = \frac{1}{729} \][/tex]
2. Evaluate [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
3. Combine the results from steps 1 and 2:
[tex]\[ \frac{1}{729} \times 9 = \frac{9}{729} \][/tex]
4. Simplify the fraction:
[tex]\[ \frac{9}{729} = \frac{1}{81} \][/tex]
5. Finally, multiply by [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{1}{81} \times \frac{1}{3} = \frac{1}{243} \][/tex]
Therefore, the result for Part b is:
[tex]\[ \left(\frac{1}{27}\right)^2 \times 3^2 \times \frac{1}{3} = 0.004115226337448559 \][/tex]
### Part c
Consider the expression:
[tex]\[ 8^2 \times 4^2 : \frac{1}{2} \][/tex]
1. Evaluate [tex]\(8^2\)[/tex]:
[tex]\[ 8^2 = 64 \][/tex]
2. Evaluate [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
3. Combine the results from steps 1 and 2:
[tex]\[ 64 \times 16 \][/tex]
[tex]\[ 64 \times 16 = 1024 \][/tex]
4. Divide by [tex]\(\frac{1}{2}\)[/tex] (which is equivalent to multiplying by 2):
[tex]\[ 1024 \div \frac{1}{2} = 1024 \times 2 \][/tex]
[tex]\[ 1024 \times 2 = 2048 \][/tex]
Therefore, the result for Part c is:
[tex]\[ 8^2 \times 4^2 : \frac{1}{2} = 2048.0 \][/tex]
In summary:
- Part b result = [tex]\(0.004115226337448559\)[/tex]
- Part c result = [tex]\(2048.0\)[/tex]
### Part b
Consider the expression:
[tex]\[ \left(\frac{1}{27}\right)^2 \times 3^2 \times \frac{1}{3} \][/tex]
1. Evaluate [tex]\(\left(\frac{1}{27}\right)^2\)[/tex]:
[tex]\[ \left(\frac{1}{27}\right)^2 = \frac{1}{27 \times 27} = \frac{1}{729} \][/tex]
2. Evaluate [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
3. Combine the results from steps 1 and 2:
[tex]\[ \frac{1}{729} \times 9 = \frac{9}{729} \][/tex]
4. Simplify the fraction:
[tex]\[ \frac{9}{729} = \frac{1}{81} \][/tex]
5. Finally, multiply by [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{1}{81} \times \frac{1}{3} = \frac{1}{243} \][/tex]
Therefore, the result for Part b is:
[tex]\[ \left(\frac{1}{27}\right)^2 \times 3^2 \times \frac{1}{3} = 0.004115226337448559 \][/tex]
### Part c
Consider the expression:
[tex]\[ 8^2 \times 4^2 : \frac{1}{2} \][/tex]
1. Evaluate [tex]\(8^2\)[/tex]:
[tex]\[ 8^2 = 64 \][/tex]
2. Evaluate [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
3. Combine the results from steps 1 and 2:
[tex]\[ 64 \times 16 \][/tex]
[tex]\[ 64 \times 16 = 1024 \][/tex]
4. Divide by [tex]\(\frac{1}{2}\)[/tex] (which is equivalent to multiplying by 2):
[tex]\[ 1024 \div \frac{1}{2} = 1024 \times 2 \][/tex]
[tex]\[ 1024 \times 2 = 2048 \][/tex]
Therefore, the result for Part c is:
[tex]\[ 8^2 \times 4^2 : \frac{1}{2} = 2048.0 \][/tex]
In summary:
- Part b result = [tex]\(0.004115226337448559\)[/tex]
- Part c result = [tex]\(2048.0\)[/tex]