Select the correct answer.

Multiply the binomials:
[tex]\[ (3x+4)(5x-2) \][/tex]

A. [tex]\( 15x^2 + 20x - 8 \)[/tex]
B. [tex]\( 15x^2 + 14x + 8 \)[/tex]
C. [tex]\( 15x^2 + 14x - 8 \)[/tex]
D. [tex]\( 15x^2 - 14x - 8 \)[/tex]



Answer :

To solve the problem of multiplying the binomials [tex]\( (3x + 4)(5x - 2) \)[/tex], we will use the distributive property (also known as the FOIL method in binomial multiplication). Here's a detailed, step-by-step solution:

1. Apply the Distributive Property:

The distributive property states that [tex]\( (a + b)(c + d) = ac + ad + bc + bd \)[/tex].

Substituting from the given binomials, we have:
[tex]\[ (3x + 4)(5x - 2) \][/tex]

Let's distribute each term in the first binomial to every term in the second binomial:

2. First Term's Products:

Multiply the first term of the first binomial by each term in the second:
[tex]\[ 3x \cdot 5x + 3x \cdot (-2) \][/tex]
This gives us:
[tex]\[ 15x^2 + (-6x) \][/tex]

3. Second Term's Products:

Multiply the second term of the first binomial by each term in the second:
[tex]\[ 4 \cdot 5x + 4 \cdot (-2) \][/tex]
This gives us:
[tex]\[ 20x + (-8) \][/tex]

4. Combine Like Terms:

Now add all the products together:
[tex]\[ 15x^2 + (-6x) + 20x + (-8) \][/tex]
Combine the [tex]\( x \)[/tex]-terms:
[tex]\[ 15x^2 + 14x - 8 \][/tex]

Therefore, the product of the binomials [tex]\( (3x + 4)(5x - 2) \)[/tex] is:
[tex]\[ 15x^2 + 14x - 8 \][/tex]

The correct answer is:
C. [tex]\( 15x^2 + 14x - 8 \)[/tex]