Answered

Select the correct answer.

[tex]\[
A=\left[\begin{array}{rr}
1 & -4 \\
-3 & 2 \\
7 & -5
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
1 & 7 \\
-2 & 11
\end{array}\right]
\][/tex]

Which of the following is the product matrix [tex]\( AB \)[/tex] ?

A. [tex]\( AB=\left[\begin{array}{ccc}9 & -5 & 17 \\ -32 & 3 & -4\end{array}\right] \)[/tex]

B. [tex]\( AB=\left[\begin{array}{cc}9 & -37 \\ -7 & 1 \\ 17 & -6\end{array}\right] \)[/tex]

C. [tex]\( AB=\left[\begin{array}{ccc}9 & -7 & -17 \\ -37 & 1 & -6\end{array}\right] \)[/tex]

D. [tex]\( AB=\left[\begin{array}{rr}9 & -32 \\ -5 & 3 \\ 17 & -4\end{array}\right] \)[/tex]



Answer :

To determine which of the given options represents the product of the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we need to perform matrix multiplication.

Given:

[tex]\[ A = \begin{pmatrix} 1 & -4 \\ -3 & 2 \\ 7 & -5 \end{pmatrix} \][/tex]

[tex]\[ B = \begin{pmatrix} 1 & 7 \\ -2 & 11 \end{pmatrix} \][/tex]

To multiply matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we use the definition of matrix multiplication where the element at the [tex]\( i \)[/tex]-th row and [tex]\( j \)[/tex]-th column of the product matrix is the dot product of the [tex]\( i \)[/tex]-th row of [tex]\( A \)[/tex] and the [tex]\( j \)[/tex]-th column of [tex]\( B \)[/tex].

Let’s compute each element step-by-step:

First Row:
1. [tex]\((1 \cdot 1) + (-4 \cdot -2) = 1 + 8 = 9\)[/tex]
2. [tex]\((1 \cdot 7) + (-4 \cdot 11) = 7 - 44 = -37\)[/tex]

So, the first row of [tex]\( AB \)[/tex] is [tex]\([9, -37]\)[/tex].

Second Row:
1. [tex]\((-3 \cdot 1) + (2 \cdot -2) = -3 - 4 = -7\)[/tex]
2. [tex]\((-3 \cdot 7) + (2 \cdot 11) = -21 + 22 = 1\)[/tex]

So, the second row of [tex]\( AB \)[/tex] is [tex]\([-7, 1]\)[/tex].

Third Row:
1. [tex]\((7 \cdot 1) + (-5 \cdot -2) = 7 + 10 = 17\)[/tex]
2. [tex]\((7 \cdot 7) + (-5 \cdot 11) = 49 - 55 = -6\)[/tex]

So, the third row of [tex]\( AB \)[/tex] is [tex]\([17, -6]\)[/tex].

Now compiling all rows together, the product matrix [tex]\( AB \)[/tex] is:

[tex]\[ AB = \begin{pmatrix} 9 & -37 \\ -7 & 1 \\ 17 & -6 \end{pmatrix} \][/tex]

Comparing this with the given options, we see that the correct answer is:

B. [tex]\( AB = \begin{pmatrix} 9 & -37 \\ -7 & 1 \\ 17 & -6 \end{pmatrix} \)[/tex]