Answer :

Let's solve the given mathematical operations step-by-step. We have two main tasks:

1. Solve for [tex]\( x \)[/tex] in the equation [tex]\( 65.6 \div x = 6.56 \)[/tex].
2. Find the value for [tex]\( y \)[/tex] in the equation [tex]\( y \times 100 = 5680 \)[/tex].

### Step 1: Solve for [tex]\( x \)[/tex]

The given equation is:

[tex]\[ 65.6 \div x = 6.56 \][/tex]

This can be rewritten as:

[tex]\[ 65.6 = 6.56 \times x \][/tex]

To find [tex]\( x \)[/tex], we divide both sides of the equation by 6.56:

[tex]\[ x = \frac{65.6}{6.56} \][/tex]

Performing this division will give the value of [tex]\( x \)[/tex]. According to our solution, [tex]\( x \)[/tex]:

[tex]\[ x = 10.0 \][/tex]

### Step 2: Solve for [tex]\( y \)[/tex]

The given equation is:

[tex]\[ y \times 100 = 5680 \][/tex]

To isolate [tex]\( y \)[/tex], we divide both sides by 100:

[tex]\[ y = \frac{5680}{100} \][/tex]

Performing this division will give the value of [tex]\( y \)[/tex]. According to our solution, [tex]\( y \)[/tex]:

[tex]\[ y = 56.8 \][/tex]

### Summary

After solving the equations step-by-step, we find:

[tex]\[ x = 10.0 \][/tex]

and

[tex]\[ y = 56.8 \][/tex]

Thus, we have successfully determined the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].