Simplify the expression.

[tex]\[ \left(x^{\frac{2}{5}}\right)^{10} \][/tex]

A. [tex]\( x^{\frac{1}{5}} \)[/tex]
B. [tex]\( x^{\frac{1}{4}} \)[/tex]
C. [tex]\( x^4 \)[/tex]
D. [tex]\( x^5 \)[/tex]



Answer :

To simplify the expression [tex]\(\left(x^{\frac{2}{5}}\right)^{10}\)[/tex], let's use the properties of exponents. Specifically, we will use the power of a power rule which states that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].

Here is the step-by-step process:

1. Identify the base and the exponents:
[tex]\[ \text{Base: } x \][/tex]
[tex]\[ \text{First exponent: } \frac{2}{5} \][/tex]
[tex]\[ \text{Second exponent: } 10 \][/tex]

2. Apply the power of a power rule:
[tex]\[ \left(x^{\frac{2}{5}}\right)^{10} = x^{\left(\frac{2}{5} \cdot 10\right)} \][/tex]

3. Perform the multiplication in the exponent:
[tex]\[ \frac{2}{5} \cdot 10 = \left(\frac{2 \cdot 10}{5}\right) \][/tex]
[tex]\[ = \frac{20}{5} \][/tex]
[tex]\[ = 4 \][/tex]

4. Write the simplified expression:
[tex]\[ x^4 \][/tex]

So, [tex]\(\left(x^{\frac{2}{5}}\right)^{10}\)[/tex] simplifies to [tex]\(x^4\)[/tex].

Therefore, among the given choices [tex]\(x^{\frac{1}{5}}, x^{\frac{1}{4}}, x^4, x^5\)[/tex], the correct answer is:
[tex]\[ x^4 \][/tex]