Calculate the side lengths [tex]$a$[/tex] and [tex]$b$[/tex] to two decimal places.

A. [tex]$a = 4.18$[/tex] and [tex][tex]$b = 3.15$[/tex][/tex]

B. [tex]$a = 11.71$[/tex] and [tex]$b = 15.56$[/tex]

C. [tex][tex]$a = 10$[/tex][/tex] and [tex]$b = 14$[/tex]

D. [tex]$a = 11.40$[/tex] and [tex][tex]$b = 13.38$[/tex][/tex]



Answer :

To determine the side lengths [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that match the given constraints, let us review the given options:

Option A:
- [tex]\(a = 4.18\)[/tex]
- [tex]\(b = 3.15\)[/tex]

Option B:
- [tex]\(a = 11.71\)[/tex]
- [tex]\(b = 15.56\)[/tex]

Option C:
- [tex]\(a = 10\)[/tex]
- [tex]\(b = 14\)[/tex]

Option D:
- [tex]\(a = 11.40\)[/tex]
- [tex]\(b = 13.38\)[/tex]

Given these options, the side lengths calculated to two decimal places are:

- For Option A: [tex]\(a = 4.18\)[/tex] and [tex]\(b = 3.15\)[/tex]
- For Option B: [tex]\(a = 11.71\)[/tex] and [tex]\(b = 15.56\)[/tex]
- For Option C: [tex]\(a = 10.00\)[/tex] and [tex]\(b = 14.00\)[/tex]
- For Option D: [tex]\(a = 11.40\)[/tex] and [tex]\(b = 13.38\)[/tex]

Hence the possible values for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to two decimal places, considering the given options, are listed correctly as:

1. [tex]\(a=4.18\)[/tex] and [tex]\(b=3.15\)[/tex]
2. [tex]\(a=11.71\)[/tex] and [tex]\(b=15.56\)[/tex]
3. [tex]\(a=10\)[/tex] and [tex]\(b=14\)[/tex]
4. [tex]\(a=11.40\)[/tex] and [tex]\(b=13.38\)[/tex]