Select the correct answer from the drop-down menu.

A rectangular prism has a length, width, and height of [tex]\frac{2}{3}[/tex] inch, [tex]\frac{3}{5}[/tex] inch, and [tex]\frac{4}{7}[/tex] inch, respectively.

The volume of the rectangular prism is [tex]\square[/tex] cubic inch.



Answer :

To find the volume of a rectangular prism, you use the formula:

[tex]\[ \text{Volume} = \text{length} \times \text{width} \times \text{height} \][/tex]

Given the dimensions of the rectangular prism:
- Length ([tex]\( l \)[/tex]) = [tex]\(\frac{2}{3}\)[/tex] inch
- Width ([tex]\( w \)[/tex]) = [tex]\(\frac{3}{5}\)[/tex] inch
- Height ([tex]\( h \)[/tex]) = [tex]\(\frac{4}{7}\)[/tex] inch

You multiply these fractions together to find the volume:

[tex]\[ \text{Volume} = \left( \frac{2}{3} \right) \times \left( \frac{3}{5} \right) \times \left( \frac{4}{7} \right) \][/tex]

First, multiply the numerators:

[tex]\[ 2 \times 3 \times 4 = 24 \][/tex]

Then, multiply the denominators:

[tex]\[ 3 \times 5 \times 7 = 105 \][/tex]

Thus, the product of the fractions is:

[tex]\[ \frac{24}{105} \][/tex]

Now, simplify the fraction:

[tex]\[ \frac{24}{105} = \frac{24 \div 3}{105 \div 3} = \frac{8}{35} \][/tex]

As a decimal, this results in approximately:

[tex]\[ 0.22857142857142854 \][/tex]

Thus, the volume of the rectangular prism is [tex]\(\boxed{0.22857142857142854}\)[/tex] cubic inch.