Chad tries designing quadrilateral pens first. Use GeoGebra to draw quadrilateral ABCD with each set of coordinates and find the perimeter and area. Then complete the table by typing the correct answer in each box. Use numerals instead of words.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
A & B & C & D & Perimeter & Area \\
\hline
(0,0) & (6,0) & (6,4) & (0,4) & units & units^2 \\
\hline
(0,0) & (5,0) & (8,4) & (3,4) & units & units^2 \\
\hline
(0,0) & (5,0) & (5,5) & (0,5) & units & units^2 \\
\hline
(0,0) & (1,0) & (1,9) & (0,9) & units & units^2 \\
\hline
\end{tabular}
\][/tex]



Answer :

To solve the given problem, we will determine the perimeter and area of each quadrilateral based on the provided coordinates.

### Quadrilateral 1: Vertices [tex]\( A(0,0) \)[/tex], [tex]\( B(6,0) \)[/tex], [tex]\( C(6,4) \)[/tex], [tex]\( D(0,4) \)[/tex]

1. Perimeter:
- [tex]\( AB = \sqrt{(6-0)^2 + (0-0)^2} = 6 \)[/tex] units
- [tex]\( BC = \sqrt{(6-6)^2 + (4-0)^2} = 4 \)[/tex] units
- [tex]\( CD = \sqrt{(0-6)^2 + (4-4)^2} = 6 \)[/tex] units
- [tex]\( DA = \sqrt{(0-0)^2 + (4-0)^2} = 4 \)[/tex] units

Total Perimeter: [tex]\( 6 + 4 + 6 + 4 = 20 \)[/tex] units

2. Area:
- This is a rectangle where the length is 6 units and the width is 4 units.
Area: [tex]\( 6 \times 4 = 24 \)[/tex] square units

### Quadrilateral 2: Vertices [tex]\( A(0,0) \)[/tex], [tex]\( B(5,0) \)[/tex], [tex]\( C(8,4) \)[/tex], [tex]\( D(3,4) \)[/tex]

1. Perimeter:
- [tex]\( AB = \sqrt{(5-0)^2 + (0-0)^2} = 5 \)[/tex] units
- [tex]\( BC = \sqrt{(8-5)^2 + (4-0)^2} = 5 \)[/tex] units
- [tex]\( CD = \sqrt{(3-8)^2 + (4-4)^2} = 5 \)[/tex] units
- [tex]\( DA = \sqrt{(0-3)^2 + (4-0)^2} = 5 \)[/tex] units

Total Perimeter: [tex]\( 5 + 5 + 5 + 5 = 20 \)[/tex] units

2. Area:
- This is a parallelogram with a base of 5 units and height of 4 units.
Area: [tex]\( 5 \times 4 = 20 \)[/tex] square units

### Quadrilateral 3: Vertices [tex]\( A(0,0) \)[/tex], [tex]\( B(5,0) \)[/tex], [tex]\( C(5,5) \)[/tex], [tex]\( D(0,5) \)[/tex]

1. Perimeter:
- [tex]\( AB = \sqrt{(5-0)^2 + (0-0)^2} = 5 \)[/tex] units
- [tex]\( BC = \sqrt{(5-5)^2 + (5-0)^2} = 5 \)[/tex] units
- [tex]\( CD = \sqrt{(0-5)^2 + (5-5)^2} = 5 \)[/tex] units
- [tex]\( DA = \sqrt{(0-0)^2 + (5-0)^2} = 5 \)[/tex] units

Total Perimeter: [tex]\( 5 + 5 + 5 + 5 = 20 \)[/tex] units

2. Area:
- This is a square with a side length of 5 units.
Area: [tex]\( 5 \times 5 = 25 \)[/tex] square units

### Quadrilateral 4: Vertices [tex]\( A(0,0) \)[/tex], [tex]\( B(1,0) \)[/tex], [tex]\( C(1,9) \)[/tex], [tex]\( D(0,9) \)[/tex]

1. Perimeter:
- [tex]\( AB = \sqrt{(1-0)^2 + (0-0)^2} = 1 \)[/tex] units
- [tex]\( BC = \sqrt{(1-1)^2 + (9-0)^2} = 9 \)[/tex] units
- [tex]\( CD = \sqrt{(0-1)^2 + (9-9)^2} = 1 \)[/tex] units
- [tex]\( DA = \sqrt{(0-0)^2 + (9-0)^2} = 9 \)[/tex] units

Total Perimeter: [tex]\( 1 + 9 + 1 + 9 = 20 \)[/tex] units

2. Area:
- This is a rectangle where the length is 1 unit and the width is 9 units.
Area: [tex]\( 1 \times 9 = 9 \)[/tex] square units

### In Summary, the table will look like this:

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline A & B & C & D & Perimeter & Area \\ \hline (0,0) & (6,0) & (6,4) & (0,4) & 20 & 24 \\ \hline (0,0) & (5,0) & (8,4) & (3,4) & 20 & 20 \\ \hline (0,0) & (5,0) & (5,5) & (0,5) & 20 & 25 \\ \hline (0,0) & (1,0) & (1,9) & (0,9) & 20 & 9 \\ \hline \end{tabular} \][/tex]