Solve the inequality and write your answer using interval notation:

[tex]\[
\frac{1}{x} + \frac{1}{x+1} \ \textless \ \frac{2}{x+2}
\][/tex]

A. The solution set is [tex]\((-2, -1) \cup \left(-\frac{2}{3}, 0\right)\)[/tex]

B. The solution set is [tex]\((-\infty, 2-\sqrt{2}) \cup (3+\sqrt{2}, \infty)\)[/tex]

C. The solution set is [tex]\([-2-\sqrt{2}, -2+\sqrt{2}]\)[/tex]

D. The solution set is [tex]\((-\infty, -2-\sqrt{2}) \cup (-2+\sqrt{2}, \infty)\)[/tex]



Answer :

To solve the inequality [tex]\(\frac{1}{x} + \frac{1}{x+1} < \frac{2}{x+2}\)[/tex], follow these steps:

1. Rewrite the inequality with a common denominator:

First, rewrite the inequality to combine the fractions on the left side. The common denominator for the fractions on the left side is [tex]\( x(x+1) \)[/tex], and for the right side, it is [tex]\( x(x+1)(x+2) \)[/tex]:

[tex]\[ \frac{(x+1) + x}{x(x+1)} < \frac{2}{x+2} \][/tex]

Simplify the numerator on the left side:
[tex]\[ \frac{2x+1}{x(x+1)} < \frac{2}{x+2} \][/tex]

2. Cross-multiply to eliminate the fractions:

To eliminate the fractions, cross-multiply (assuming [tex]\( x \)[/tex], [tex]\( x+1 \)[/tex], and [tex]\( x+2 \)[/tex] are non-zero):

[tex]\[ (2x+1)(x+2) < 2x(x+1) \][/tex]

3. Expand both sides of the inequality:

Expand the products:
[tex]\[ 2x^2 + 5x + 2 < 2x^2 + 2x \][/tex]

4. Simplify the inequality:

Subtract [tex]\( 2x^2 + 2x \)[/tex] from both sides:

[tex]\[ 5x + 2 - 2x < 0 \][/tex]

[tex]\[ 3x + 2 < 0 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Isolate [tex]\( x \)[/tex]:

[tex]\[ 3x < -2 \][/tex]

[tex]\[ x < -\frac{2}{3} \][/tex]

6. Consider the nonlinearity and potential critical points:

The solution also needs to consider the points where either the denominator of the fractions becomes zero. These critical points are [tex]\( x = 0 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = -2 \)[/tex]. So, we need to analyze the intervals determined by these points:
- [tex]\( (-\infty, -2) \)[/tex]
- [tex]\( (-2, -1) \)[/tex]
- [tex]\( (-1, 0) \)[/tex]
- [tex]\( (0, \infty) \)[/tex]

Evaluating each interval by testing points within them:

- For [tex]\( x \in (-\infty, -2) \)[/tex]:
It does not satisfy the inequality.

- For [tex]\( x \in (-2, -1) \)[/tex]:
Test with [tex]\( x = -1.5 \)[/tex]:
[tex]\[ \frac{1}{-1.5} + \frac{1}{-0.5} < \frac{2}{0.5} \][/tex]
[tex]\[ -\frac{2}{3} - 2 < 4 \][/tex]
True.

- For [tex]\( x \in (-1, 0) \)[/tex]:
Test with [tex]\( x = -0.5 \)[/tex]:
[tex]\[ \frac{1}{-0.5} + \frac{1}{0.5} < \frac{2}{1.5} \][/tex]
[tex]\[ -2 + 2 < \frac{4}{3} \][/tex]
True.

Thus, combining these results:

[tex]\[ x \in (-2, -1) \cup \left(-\frac{2}{3}, 0\right) \][/tex]

Therefore, the solution set for the inequality [tex]\(\frac{1}{x} + \frac{1}{x+1} < \frac{2}{x+2}\)[/tex] is:

[tex]\[ \boxed{(-2, -1) \cup \left(-\frac{2}{3}, 0\right)} \][/tex]