Solve for [tex]$x$[/tex] in the equation [tex]$2x^2 + 3x - 7 = x^2 + 5x + 39$[/tex]:

A. [tex][tex]$x = -6 \pm \sqrt{82}$[/tex][/tex]
B. [tex]$x = -6 \pm 2\sqrt{17}$[/tex]
C. [tex]$x = 1 \pm \sqrt{33}$[/tex]
D. [tex][tex]$x = 1 \pm \sqrt{47}$[/tex][/tex]



Answer :

To solve the equation [tex]\(2x^2 + 3x - 7 = x^2 + 5x + 39\)[/tex], we need to rearrange and simplify it.

1. Move all the terms to one side of the equation:

Start by subtracting [tex]\(x^2 + 5x + 39\)[/tex] from both sides:
[tex]\[ 2x^2 + 3x - 7 - (x^2 + 5x + 39) = 0 \][/tex]

2. Simplify the equation:

Combine like terms:
[tex]\[ 2x^2 + 3x - 7 - x^2 - 5x - 39 = 0 \][/tex]
[tex]\[ (2x^2 - x^2) + (3x - 5x) + (-7 - 39) = 0 \][/tex]
[tex]\[ x^2 - 2x - 46 = 0 \][/tex]

3. Solve the quadratic equation [tex]\(x^2 - 2x - 46 = 0\)[/tex]:

A standard quadratic equation can be written in the form [tex]\(ax^2 + bx + c = 0\)[/tex]. In this equation, [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = -46\)[/tex].

We use the quadratic formula, which is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Plug [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-46)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{4 + 184}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{188}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{4 \cdot 47}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 2\sqrt{47}}{2} \][/tex]
[tex]\[ x = 1 \pm \sqrt{47} \][/tex]

4. Conclusion:

The solutions to the equation [tex]\(2x^2 + 3x - 7 = x^2 + 5x + 39\)[/tex] are:
[tex]\[ x = 1 - \sqrt{47} \quad \text{and} \quad x = 1 + \sqrt{47} \][/tex]

Therefore, the answer is [tex]\( \boxed{1 \pm \sqrt{47}} \)[/tex].