What is the frequency of light having a wavelength of 523 nm?

A) [tex]5.74 \times 10^4 \, \text{Hz}[/tex]
B) [tex]6.58 \times 10 \, \text{Hz}[/tex]
C) [tex]6.58 \times 10^4 \, \text{Hz}[/tex]
D) [tex]5.74 \times 10 \, \text{Hz}[/tex]



Answer :

To find the frequency of light with a given wavelength, we can use the formula that relates the speed of light ([tex]\(c\)[/tex]), frequency ([tex]\(f\)[/tex]), and wavelength ([tex]\(\lambda\)[/tex]):

[tex]\[ c = \lambda \times f \][/tex]

Here:
- The speed of light [tex]\(c\)[/tex] in a vacuum is approximately [tex]\(3 \times 10^8\)[/tex] meters per second.
- The wavelength [tex]\(\lambda\)[/tex] is given as 523 nanometers (nm). We need to convert this into meters by multiplying by [tex]\(10^{-9}\)[/tex], since 1 nm = [tex]\(10^{-9}\)[/tex] meters.

Let's write the steps clearly:

1. Convert the wavelength into meters:
[tex]\[ \lambda = 523 \, \text{nm} \times 10^{-9} \, \frac{\text{meters}}{\text{nm}} = 523 \times 10^{-9} \, \text{meters} \][/tex]

2. Rearrange the formula to solve for frequency [tex]\(f\)[/tex]:
[tex]\[ f = \frac{c}{\lambda} \][/tex]

3. Substitute the values into the formula:
[tex]\[ f = \frac{3 \times 10^8 \, \text{meters/second}}{523 \times 10^{-9} \, \text{meters}} \][/tex]

4. Calculate the frequency:
[tex]\[ f \approx 573613766730401.5 \, \text{Hz} \][/tex]

The result is:

[tex]\[ f \approx 5.74 \times 10^{14} \, \text{Hz} \][/tex]

Given the options:
A) 5.74 x 104Hz
B) 6.58 x 10 Hz
C) 6.58 x 104Hz
D) 5.74 x 10 Hz

It seems there is a typo or error in the question since none of the provided options match the correct frequency value of approximately [tex]\(5.74 \times 10^{14}\)[/tex] Hz.

The correct answer should be around [tex]\(5.74 \times 10^{14}\)[/tex] Hz.