The table of values represents a quadratic function [tex]f(x)[/tex].

\begin{tabular}{|l|l|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-8 & 7 \\
\hline
-7 & 2 \\
\hline
-6 & -1 \\
\hline
-5 & -2 \\
\hline
-4 & -1 \\
\hline
-3 & 2 \\
\hline
-2 & 7 \\
\hline
-1 & 14 \\
\hline
0 & 23 \\
\hline
\end{tabular}

What is the equation of [tex]f(x)[/tex]?



Answer :

To determine the equation of the quadratic function [tex]\( f(x) \)[/tex], we need to find the coefficients of the quadratic polynomial [tex]\( f(x) = ax^2 + bx + c \)[/tex].

Given the provided table of values:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -8 & 7 \\ -7 & 2 \\ -6 & -1 \\ -5 & -2 \\ -4 & -1 \\ -3 & 2 \\ -2 & 7 \\ -1 & 14 \\ 0 & 23 \\ \hline \end{array} \][/tex]

Let's fit a quadratic function to these values. We have the general form of the quadratic function:

[tex]\[ f(x) = ax^2 + bx + c \][/tex]

The process of fitting the quadratic function yields the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

- [tex]\( a \)[/tex] is the coefficient of [tex]\( x^2 \)[/tex]
- [tex]\( b \)[/tex] is the coefficient of [tex]\( x \)[/tex]
- [tex]\( c \)[/tex] is the constant term.

After determining the best fit for the coefficients, we find:

[tex]\[ a \approx 1.0, \quad b \approx 10.0, \quad c \approx 23.0 \][/tex]

Therefore, the quadratic function [tex]\( f(x) \)[/tex] that best fits the given data points is:

[tex]\[ f(x) = 1.0x^2 + 10.0x + 23.0 \][/tex]

Simplifying the coefficients to just integers for clarity, we can write:

[tex]\[ f(x) = x^2 + 10x + 23 \][/tex]

Thus, the equation of [tex]\( f(x) \)[/tex] is:

[tex]\[ f(x) = x^2 + 10x + 23 \][/tex]