The functions [tex]f[/tex] and [tex]g[/tex] are defined as follows:
[tex]\[ f(x) = -6x - 7 \][/tex]
[tex]\[ g(x) = -3x^3 - x + 3 \][/tex]

Find [tex]f(5)[/tex] and [tex]g(-1)[/tex]. Simplify your answers as much as possible.

Answer:
[tex]\[ f(5) = \][/tex]
[tex]\[\boxed{}\][/tex]
[tex]\[ g(-1) = \][/tex]
[tex]\[\boxed{}\][/tex]



Answer :

Let's find [tex]\( f(5) \)[/tex] and [tex]\( g(-1) \)[/tex] using the given functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex].

### Calculating [tex]\( f(5) \)[/tex]:

Given the function [tex]\( f(x) = -6x - 7 \)[/tex]:

1. Substitute [tex]\( x = 5 \)[/tex] into the function:
[tex]\[ f(5) = -6(5) - 7 \][/tex]

2. Calculate the value:
[tex]\[ f(5) = -30 - 7 \][/tex]

3. Simplify the expression:
[tex]\[ f(5) = -37 \][/tex]

So, [tex]\( f(5) = -37 \)[/tex].

### Calculating [tex]\( g(-1) \)[/tex]:

Given the function [tex]\( g(x) = -3x^3 - x + 3 \)[/tex]:

1. Substitute [tex]\( x = -1 \)[/tex] into the function:
[tex]\[ g(-1) = -3(-1)^3 - (-1) + 3 \][/tex]

2. Calculate the value step-by-step:
[tex]\[ g(-1) = -3(-1) - (-1) + 3 \][/tex]
[tex]\[ g(-1) = 3 + 1 + 3 \][/tex]

3. Simplify the expression:
[tex]\[ g(-1) = 7 \][/tex]

So, [tex]\( g(-1) = 7 \)[/tex].

### Final Answers:
[tex]\[ f(5) = -37 \][/tex]
[tex]\[ g(-1) = 7 \][/tex]