Solve [tex]8x + c = k[/tex] for [tex]x[/tex].

A. [tex]x = \frac{k - c}{8}[/tex]
B. [tex]x = 8(k + c)[/tex]
C. [tex]x = \frac{k + c}{8}[/tex]
D. [tex]x = 8(k - c)[/tex]



Answer :

To solve the equation [tex]\( 8x + c = k \)[/tex] for [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex].

Here’s a step-by-step breakdown of the process:

1. Start with the original equation:
[tex]\[ 8x + c = k \][/tex]

2. Subtract [tex]\( c \)[/tex] from both sides of the equation:
[tex]\[ 8x + c - c = k - c \][/tex]
Simplifying this gives:
[tex]\[ 8x = k - c \][/tex]

3. Divide both sides by 8 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{k - c}{8} \][/tex]

The correct solution isolates [tex]\( x \)[/tex] on one side of the equation. Therefore, the correct choice is:
[tex]\[ \boxed{x = \frac{k - c}{8}} \][/tex]

So the correct answer is:
A. [tex]\( x = \frac{k - c}{8} \)[/tex]