Write the augmented matrix for the system of linear equations.

[tex]\[
\begin{array}{l}
-9w + x + 8y + 2z = -6 \\
-5x + 9y - 7z = 6 \\
-3w - 6x + 4y + 9z = 4 \\
-3w - 8x + y = -2
\end{array}
\][/tex]

[tex]\[
\begin{bmatrix}
-9 & 1 & 8 & 2 & | & -6 \\
0 & -5 & 9 & -7 & | & 6 \\
-3 & -6 & 4 & 9 & | & 4 \\
-3 & -8 & 1 & 0 & | & -2
\end{bmatrix}
\][/tex]



Answer :

To write the augmented matrix for the given system of linear equations, follow these steps:

1. Identify the coefficients of each variable in the system of equations.
2. Construct the coefficient matrix based on these coefficients.
3. Add the right-hand side constants of the equations as the last column in the matrix to form the augmented matrix.

Here are the equations provided:

[tex]\[ \begin{array}{l} -9w + x + 8y + 2z = -6 \\ -5x + 9y - 7z = 6 \\ -3w - 6x + 4y + 9z = 4 \\ -3w - 8x + y = -2 \\ \end{array} \][/tex]

To construct the coefficient matrix:

1. List the coefficients for each variable [tex]\( w, x, y, z \)[/tex] from each equation.

[tex]\[ \begin{pmatrix} -9 & 1 & 8 & 2 \\ 0 & -5 & 9 & -7 \\ -3 & -6 & 4 & 9 \\ -3 & -8 & 1 & 0 \\ \end{pmatrix} \][/tex]

2. Include the right-hand side constants as the last column in the matrix.

[tex]\[ \begin{pmatrix} -9 & 1 & 8 & 2 & -6 \\ 0 & -5 & 9 & -7 & 6 \\ -3 & -6 & 4 & 9 & 4 \\ -3 & -8 & 1 & 0 & -2 \\ \end{pmatrix} \][/tex]

Therefore, the augmented matrix for the given system of linear equations is:

[tex]\[ \begin{pmatrix} -9 & 1 & 8 & 2 & -6 \\ 0 & -5 & 9 & -7 & 6 \\ -3 & -6 & 4 & 9 & 4 \\ -3 & -8 & 1 & 0 & -2 \\ \end{pmatrix} \][/tex]