Which point corresponds to the real zero of the graph of [tex]$y=\log_3(x+2)-1$[/tex]?

A. [tex]$(-1, -1)$[/tex]
B. [tex]$(1, 0)$[/tex]
C. [tex]$(-1, 0)$[/tex]
D. [tex]$(0, -0.369)$[/tex]



Answer :

To determine which point corresponds to the real zero of the graph of the function [tex]\( y = \log_3(x + 2) - 1 \)[/tex], we must find the value of [tex]\( x \)[/tex] that makes [tex]\( y \)[/tex] equal to zero.

1. Set [tex]\( y \)[/tex] to zero:
[tex]\[ 0 = \log_3(x + 2) - 1 \][/tex]

2. Solve the equation for [tex]\( x \)[/tex]:
We start by isolating the logarithmic term:
[tex]\[ \log_3(x + 2) = 1 \][/tex]

Next, we rewrite the logarithmic equation in its exponential form:
[tex]\[ x + 2 = 3^1 \][/tex]

Simplify the right-hand side:
[tex]\[ x + 2 = 3 \][/tex]

Finally, solve for [tex]\( x \)[/tex]:
[tex]\[ x = 3 - 2 \][/tex]
[tex]\[ x = 1 \][/tex]

3. Verify the corresponding [tex]\( y \)[/tex]:
We substitute [tex]\( x = 1 \)[/tex] back into the original function:
[tex]\[ y = \log_3(1 + 2) - 1 \][/tex]
Simplify inside the logarithm:
[tex]\[ y = \log_3(3) - 1 \][/tex]
Since [tex]\( \log_3(3) = 1 \)[/tex]:
[tex]\[ y = 1 - 1 \][/tex]
[tex]\[ y = 0 \][/tex]

We found that the point where the function [tex]\( y = \log_3(x + 2) - 1 \)[/tex] crosses the x-axis (i.e., the zero of the function) is [tex]\( (1, 0) \)[/tex].

Conclusion:

The point [tex]\((1, 0)\)[/tex] corresponds to the real zero of the graph of [tex]\( y = \log_3(x + 2) - 1 \)[/tex].