11. An object of mass 1.2 kg is moving with a velocity of [tex]2.0 \, \text{m/s}[/tex] when it is acted on by a force of 4.0 N. The velocity of the object increases to [tex]5.0 \, \text{m/s}[/tex].

For what period of time does the force act on the object?

A. 0.90 s
B. 1.1 s
C. 1.5 s
D. 3.6 s



Answer :

To determine the period of time during which the 4.0 N force acts on the object, we'll follow a detailed, step-by-step approach:

1. Identify the given values:
- Mass of the object ([tex]\( m \)[/tex]): 1.2 kg
- Initial velocity ([tex]\( v_i \)[/tex]): 2.0 m/s
- Final velocity ([tex]\( v_f \)[/tex]): 5.0 m/s
- Force ([tex]\( F \)[/tex]): 4.0 N

2. Calculate the change in velocity ([tex]\( \Delta v \)[/tex]):

[tex]\[ \Delta v = v_f - v_i \][/tex]

Substituting the given values:

[tex]\[ \Delta v = 5.0 \, \text{m/s} - 2.0 \, \text{m/s} = 3.0 \, \text{m/s} \][/tex]

3. Determine the acceleration ([tex]\( a \)[/tex]):

According to Newton's second law, the force acting on an object is equal to the mass of the object multiplied by its acceleration:

[tex]\[ F = m \cdot a \][/tex]

Solving for acceleration:

[tex]\[ a = \frac{F}{m} \][/tex]

Substituting the given values:

[tex]\[ a = \frac{4.0 \, \text{N}}{1.2 \, \text{kg}} = 3.33 \, \text{m/s}^2 \][/tex]

4. Calculate the time period ([tex]\( \Delta t \)[/tex]):

The formula for acceleration when dealing with constant acceleration is:

[tex]\[ a = \frac{\Delta v}{\Delta t} \][/tex]

Solving for the time period:

[tex]\[ \Delta t = \frac{\Delta v}{a} \][/tex]

Substituting the calculated values:

[tex]\[ \Delta t = \frac{3.0 \, \text{m/s}}{3.33 \, \text{m/s}^2} \approx 0.90 \, \text{s} \][/tex]

Therefore, the period of time during which the force acts on the object is approximately 0.90 seconds. The correct answer is:

[tex]\[ \boxed{0.90 \, \text{s}} \][/tex]

So, the answer is [tex]\( \text{A} \)[/tex] 0.90 s.