Type the correct answer in each box.

There are three letter tiles—A, B, and C—in a bag; and there are three number tiles—1, 2, and 3—in another bag. Alexis picks a letter tile, and then she picks a number tile. Complete the table representing the sample space for this situation.

\begin{tabular}{|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{Letter Tile} \\
\hline & & A & B & C \\
\hline & 1 & A-1 & B-1 & C-1 \\
\cline { 2 - 5 } Number Tile & 2 & A-2 & B-2 & C-2 \\
\cline { 2 - 5 } & 3 & A-3 & B-3 & C-3 \\
\hline
\end{tabular}

The sample size of the event is [tex]$\square$[/tex].



Answer :

To complete the table representing the sample space for the situation where Alexis picks a letter tile and a number tile, we need to fill in the missing parts.

[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline & & \multicolumn{3}{|c|}{ \textbf{Letter Tile} } \\ \hline & & A & B & C \\ \hline & 1 & A-1 & B-1 & C-1 \\ \cline { 2 - 5 } \textbf{Number Tile} & 2 & A-2 & \textbf{B-2} & C-2 \\ \cline { 2 - 5 } & 3 & A-3 & B-3 & \textbf{C-3} \\ \hline \end{tabular} \][/tex]

Therefore:
- The missing entry in row 2, column B is "B-2".
- The missing entry in row 3, column C is "C-3".

The sample size of the event is the total number of possible outcomes, which is:
[tex]\[ \text{Sample size} = 3 \text{ letter tiles} \times 3 \text{ number tiles} = 9 \][/tex]

So, the completed table should look like this:

[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline & & \multicolumn{3}{|c|}{\textbf{Letter Tile}} \\ \hline & & \textbf{A} & \textbf{B} & \textbf{C} \\ \hline & 1 & A-1 & B-1 & C-1 \\ \cline{2-5} \textbf{Number Tile} & 2 & A-2 & B-2 & C-2 \\ \cline{2-5} & 3 & A-3 & B-3 & C-3 \\ \hline \end{tabular} \][/tex]

The sample size of the event is [tex]\( 9 \)[/tex].