Select the correct answer.

What is the velocity of an 11-kilogram object with 792 joules of kinetic energy? Use [tex]v = \sqrt{\frac{2 KE}{m}}[/tex].

A. [tex]7 \, \text{m/s}[/tex]

B. [tex]8 \, \text{m/s}[/tex]

C. [tex]9 \, \text{m/s}[/tex]

D. [tex]11 \, \text{m/s}[/tex]

E. [tex]12 \, \text{m/s}[/tex]



Answer :

To find the velocity of an 11-kilogram object with 792 joules of kinetic energy, we can use the formula for kinetic energy, which relates the kinetic energy (KE), mass (m), and velocity (v):

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

We are given:
- [tex]\( KE = 792 \)[/tex] joules,
- [tex]\( m = 11 \)[/tex] kilograms.

We need to solve for [tex]\( v \)[/tex]. First, we rearrange the formula to solve for [tex]\( v \)[/tex]:

[tex]\[ v = \sqrt{\frac{2 KE}{m}} \][/tex]

Next, substitute the given values into the formula:

[tex]\[ v = \sqrt{\frac{2 \times 792}{11}} \][/tex]

Simplify inside the square root:

[tex]\[ v = \sqrt{\frac{1584}{11}} \][/tex]

[tex]\[ v = \sqrt{144} \][/tex]

Finally, we take the square root of 144:

[tex]\[ v = 12 \, \text{m/s} \][/tex]

Therefore, the correct answer is:

E. [tex]\( 12 \, \text{m/s} \)[/tex]