Answer :
Let's break this problem down step by step and solve it.
We need to simplify the expression:
[tex]\[ \frac{\left(\frac{1}{3}\right)^4 \times\left(\frac{1}{3}\right)^6}{\left[\left(\frac{1}{3}\right)^4\right]^2} \][/tex]
### Step 1: Simplify each part individually
#### Numerator
First, look at the numerator:
[tex]\[ \left(\frac{1}{3}\right)^4 \times \left(\frac{1}{3}\right)^6 \][/tex]
We can use the property of exponents that [tex]\(a^m \times a^n = a^{m+n}\)[/tex]:
[tex]\[ \left(\frac{1}{3}\right)^4 \times \left(\frac{1}{3}\right)^6 = \left(\frac{1}{3}\right)^{4+6} = \left(\frac{1}{3}\right)^{10} \][/tex]
#### Denominator
Next, look at the denominator:
[tex]\[ \left[\left(\frac{1}{3}\right)^4\right]^2 \][/tex]
Using the property of exponents that [tex]\((a^m)^n = a^{m \times n}\)[/tex]:
[tex]\[ \left[\left(\frac{1}{3}\right)^4\right]^2 = \left(\frac{1}{3}\right)^{4 \times 2} = \left(\frac{1}{3}\right)^8 \][/tex]
### Step 2: Combine the simplified parts
Now we need to combine the numerator and the denominator:
[tex]\[ \frac{\left(\frac{1}{3}\right)^{10}}{\left(\frac{1}{3}\right)^8} \][/tex]
We can use the property of exponents that [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ \frac{\left(\frac{1}{3}\right)^{10}}{\left(\frac{1}{3}\right)^8} = \left(\frac{1}{3}\right)^{10-8} = \left(\frac{1}{3}\right)^2 \][/tex]
### Step 3: Calculate the final result
Calculate [tex]\(\left(\frac{1}{3}\right)^2\)[/tex]:
[tex]\[ \left(\frac{1}{3}\right)^2 = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \][/tex]
In decimal form, [tex]\(\frac{1}{9}\)[/tex] is approximately:
[tex]\[ \frac{1}{9} = 0.1111111111111111 \][/tex]
Therefore, the simplified result of the original expression is:
[tex]\[ \boxed{0.1111111111111111} \][/tex]
We need to simplify the expression:
[tex]\[ \frac{\left(\frac{1}{3}\right)^4 \times\left(\frac{1}{3}\right)^6}{\left[\left(\frac{1}{3}\right)^4\right]^2} \][/tex]
### Step 1: Simplify each part individually
#### Numerator
First, look at the numerator:
[tex]\[ \left(\frac{1}{3}\right)^4 \times \left(\frac{1}{3}\right)^6 \][/tex]
We can use the property of exponents that [tex]\(a^m \times a^n = a^{m+n}\)[/tex]:
[tex]\[ \left(\frac{1}{3}\right)^4 \times \left(\frac{1}{3}\right)^6 = \left(\frac{1}{3}\right)^{4+6} = \left(\frac{1}{3}\right)^{10} \][/tex]
#### Denominator
Next, look at the denominator:
[tex]\[ \left[\left(\frac{1}{3}\right)^4\right]^2 \][/tex]
Using the property of exponents that [tex]\((a^m)^n = a^{m \times n}\)[/tex]:
[tex]\[ \left[\left(\frac{1}{3}\right)^4\right]^2 = \left(\frac{1}{3}\right)^{4 \times 2} = \left(\frac{1}{3}\right)^8 \][/tex]
### Step 2: Combine the simplified parts
Now we need to combine the numerator and the denominator:
[tex]\[ \frac{\left(\frac{1}{3}\right)^{10}}{\left(\frac{1}{3}\right)^8} \][/tex]
We can use the property of exponents that [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ \frac{\left(\frac{1}{3}\right)^{10}}{\left(\frac{1}{3}\right)^8} = \left(\frac{1}{3}\right)^{10-8} = \left(\frac{1}{3}\right)^2 \][/tex]
### Step 3: Calculate the final result
Calculate [tex]\(\left(\frac{1}{3}\right)^2\)[/tex]:
[tex]\[ \left(\frac{1}{3}\right)^2 = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \][/tex]
In decimal form, [tex]\(\frac{1}{9}\)[/tex] is approximately:
[tex]\[ \frac{1}{9} = 0.1111111111111111 \][/tex]
Therefore, the simplified result of the original expression is:
[tex]\[ \boxed{0.1111111111111111} \][/tex]