Given the sequence [tex]\left\{b_n\right\}=10\left(\frac{1}{3}\right)^{n-1}[/tex]. If possible, determine [tex]\sum_{n=1}^{\infty} b_n[/tex].

Which of the following is correct?

A. The series (sum) converges to 0.
B. The series (sum) converges to 15.
C. The series (sum) converges to 10.
D. The series (sum) diverges.



Answer :

To determine whether the given sequence [tex]\( b_n = 10 \left(\frac{1}{3}\right)^{n-1} \)[/tex] converges and, if so, to what value, we will analyze it as a geometric series. Here are the steps:

1. Identify the general form of the series:
The given sequence [tex]\( b_n \)[/tex] can be rewritten as:
[tex]\[ b_n = 10 \left(\frac{1}{3}\right)^{n-1} \][/tex]
This represents a geometric series of the form [tex]\( a \cdot r^{n-1} \)[/tex] where:
- [tex]\( a = 10 \)[/tex] (the first term)
- [tex]\( r = \frac{1}{3} \)[/tex] (the common ratio)

2. Criterion for convergence:
A geometric series converges if and only if the absolute value of the common ratio [tex]\( |r| \)[/tex] is less than 1.
- In this case, [tex]\( r = \frac{1}{3} \)[/tex]
- Since [tex]\( \left|\frac{1}{3}\right| < 1 \)[/tex], the series converges.

3. Formula for the sum of an infinite geometric series:
The sum [tex]\( S \)[/tex] of an infinite geometric series with the first term [tex]\( a \)[/tex] and common ratio [tex]\( r \)[/tex] (where [tex]\( |r| < 1 \)[/tex]) is given by:
[tex]\[ S = \frac{a}{1 - r} \][/tex]

4. Apply the sum formula:
We substitute [tex]\( a = 10 \)[/tex] and [tex]\( r = \frac{1}{3} \)[/tex] into the formula:
[tex]\[ S = \frac{10}{1 - \frac{1}{3}} = \frac{10}{\frac{2}{3}} = 10 \cdot \frac{3}{2} = 15 \][/tex]

5. Conclusion:
Hence, the series [tex]\( \sum_{n=1}^\infty 10 \left(\frac{1}{3}\right)^{n-1} \)[/tex] converges to 15.

Therefore, the correct statement is:
- The series (sum) converges to 15.