\begin{tabular}{|c|c|}
\hline
liquid & density \\
\hline
diethylamine & [tex]$0.71 \frac{ g }{ cm^3}$[/tex] \\
\hline
ethanolamine & [tex]$1.0 \frac{ g }{ cm^3}$[/tex] \\
\hline
carbon tetrachloride & [tex]$1.6 \frac{ g }{ cm^3}$[/tex] \\
\hline
acetone & [tex]$0.79 \frac{ g }{ cm^3}$[/tex] \\
\hline
glycerol & [tex]$1.3 \frac{ g }{ cm^3}$[/tex] \\
\hline
\end{tabular}

Next, the chemist measures the volume of the unknown liquid as 0.982 L and the mass of the unknown liquid as [tex]$1.00 \times 10^3 g$[/tex].

\begin{tabular}{|c|c|}
\hline
Calculate the density of the liquid. Round your answer to 3 significant digits. & [tex]$\square \frac{ g }{ cm^3}$[/tex] \\
\hline
Given the data above, is it possible to identify the liquid? & \begin{tabular}{l}
yes \\
no
\end{tabular} \\
\hline
If it is possible to identify the liquid, do so. & \begin{tabular}{l}
diethylamine \\
ethanolamine \\
carbon tetrachloride \\
acetone \\
glycerol
\end{tabular} \\
\hline
\end{tabular}



Answer :

Let's proceed step-by-step to solve the problem based on the information provided.

### Step 1: Convert Volume to Cubic Centimeters
First, we need to convert the volume of the unknown liquid from liters to cubic centimeters.

Given:
- Volume of the liquid [tex]\(\text{V}_{\text{liters}} = 0.982 \text{ L}\)[/tex]

Since 1 liter is equivalent to 1000 cubic centimeters, we can convert the volume as follows:
[tex]\[ \text{V}_{\text{cm}} = 0.982 \text{ L} \times 1000 = 982.0 \text{ cm}^3 \][/tex]

### Step 2: Calculate the Density
Next, we calculate the density of the liquid using the formula for density:
[tex]\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \][/tex]

Given:
- Mass of the liquid [tex]\(\text{M} = 1.00 \times 10^3 \text{ g}\)[/tex]
- Volume of the liquid [tex]\(\text{V}_{\text{cm}} = 982.0 \text{ cm}^3\)[/tex]

Substitute these values into the formula:
[tex]\[ \text{Density} = \frac{1.00 \times 10^3 \text{ g}}{982.0 \text{ cm}^3} \approx 1.018 \frac{\text{g}}{\text{cm}^3} \][/tex]

Rounding the density to 3 significant digits, we get:
[tex]\[ \text{Density} = 1.018 \frac{\text{g}}{\text{cm}^3} \][/tex]

### Step 3: Compare the Calculated Density with Given Densities
We now compare the calculated density with the densities of the known liquids:

[tex]\[ \begin{array}{|c|c|} \hline \text{Liquid} & \text{Density} (\frac{\text{g}}{\text{cm}^3}) \\ \hline \text{Diethylamine} & 0.71 \\ \hline \text{Ethanolamine} & 1.0 \\ \hline \text{Carbon Tetrachloride} & 1.6 \\ \hline \text{Acetone} & 0.79 \\ \hline \text{Glycerol} & 1.3 \\ \hline \end{array} \][/tex]

The calculated density is 1.018 [tex]\(\frac{\text{g}}{\text{cm}^3}\)[/tex]. Comparing this with the known densities, we see that none of the given liquids have a density close to 1.018 [tex]\(\frac{\text{g}}{\text{cm}^3}\)[/tex].

### Conclusion

1. Calculate the density of the liquid. Round your answer to 3 significant digits.

[tex]\[ \text{Density} = 1.018 \frac{\text{g}}{\text{cm}^3} \][/tex]

2. Given the data above, is it possible to identify the liquid?

[tex]\[ \text{no} \][/tex]

3. If it is possible to identify the liquid, do so.

Since it's not possible to accurately match the density of 1.018 [tex]\(\frac{\text{g}}{\text{cm}^3}\)[/tex] with any of the given liquids, we cannot identify the liquid.

So, our answers to the questions are:

[tex]\[ \begin{array}{|c|c|} \hline \text{Calculate the density of the liquid (rounded to 3 significant digits)} & 1.018 \frac{\text{g}}{\text{cm}^3} \\ \hline \begin{array}{l} \text{Given the data above, is it possible to} \\ \text{identify the liquid?} \end{array} & \text{no} \\ \hline \end{array} \][/tex]