A student sets up the following equation to convert a measurement. (The ? stands for a number the student is going to calculate.)

Fill in the missing part of this equation.

[tex]\[ \left(-8.9 \times 10^4 \frac{g}{cm^3}\right) \cdot \square = ? \frac{g}{m^3} \][/tex]



Answer :

Sure, let's work through the conversion step by step to fill in the missing part of the equation.

Given:
[tex]\[ \left(-8.9 \times 10^4 \frac{ g }{ cm^3}\right) \][/tex]

We're converting from [tex]\( \frac{g}{cm^3} \)[/tex] to [tex]\( \frac{g}{m^3} \)[/tex].

To do this, we need to know the conversion factor between [tex]\( \text{cm}^3 \)[/tex] and [tex]\( \text{m}^3 \)[/tex].

1 [tex]\( m^3 \)[/tex] is equal to [tex]\( 10^6 cm^3 \)[/tex]. Therefore, our conversion factor is [tex]\( 10^6 \)[/tex]:

[tex]\[ 1 \text{ m}^3 = 10^6 \text{ cm}^3 \][/tex]

We multiply the given value by the conversion factor to perform the conversion:

[tex]\[ \left(-8.9 \times 10^4 \frac{ g }{ cm^3}\right) \cdot \left(10^6 \frac{ cm^3 }{ m^3}\right) \][/tex]

Now, let's calculate the result:

[tex]\[ (-8.9 \times 10^4) \times 10^6 = -8.9 \times 10^{10} \][/tex]

So, the missing part of the equation should be [tex]\( 10^6 \)[/tex]:

[tex]\[ \left(-8.9 \times 10^4 \frac{ g }{ cm^3}\right) \cdot 10^6 = -8.9 \times 10^{10} \frac{ g }{ m^3} \][/tex]

Thus, the student's final equation is:
[tex]\[ \left(-8.9 \times 10^4 \frac{ g }{ cm^3}\right) \cdot 10^6 = -8.9 \times 10^{10} \frac{ g }{ m^3} \][/tex]