Answer :
To divide the polynomial [tex]\(10x^3 + 19x^2 + 15x - 11\)[/tex] by [tex]\(2x^2 + 5x + 6\)[/tex] using long division, we follow these steps:
1. Set up the division: Write the dividend [tex]\(10x^3 + 19x^2 + 15x - 11\)[/tex] and the divisor [tex]\(2x^2 + 5x + 6\)[/tex].
2. Divide the leading terms: Divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{10x^3}{2x^2} = 5x \][/tex]
This gives us the first term of the quotient, [tex]\(5x\)[/tex].
3. Multiply and subtract: Multiply the entire divisor [tex]\(2x^2 + 5x + 6\)[/tex] by [tex]\(5x\)[/tex] and subtract it from the original dividend:
[tex]\[ (10x^3 + 19x^2 + 15x - 11) - (5x \cdot (2x^2 + 5x + 6)) = (10x^3 + 19x^2 + 15x - 11) - (10x^3 + 25x^2 + 30x) \][/tex]
[tex]\[ = (10x^3 + 19x^2 + 15x - 11) - 10x^3 - 25x^2 - 30x = -6x^2 - 15x - 11 \][/tex]
4. Repeat the process: Now we repeat the division with the new polynomial [tex]\(-6x^2 - 15x - 11\)[/tex]:
[tex]\[ \frac{-6x^2}{2x^2} = -3 \][/tex]
This gives us the next term of the quotient, [tex]\(-3\)[/tex].
5. Multiply and subtract again: Multiply the entire divisor by [tex]\(-3\)[/tex] and subtract from the result of the previous subtraction:
[tex]\[ (-6x^2 - 15x - 11) - (-3 \cdot (2x^2 + 5x + 6)) = (-6x^2 - 15x - 11) - (-6x^2 - 15x - 18) \][/tex]
[tex]\[ = (-6x^2 - 15x - 11) - -6x^2 - -15x - -18 = ( - 11 +18 ) = 7 \][/tex]
6. Write the result: Now we have:
[tex]\[ Quotient: 5x - 3 \][/tex]
[tex]\[ Remainder: 7 \][/tex]
So, the division of [tex]\(10x^3 + 19x^2 + 15x - 11\)[/tex] by [tex]\(2x^2 + 5x + 6\)[/tex] yields a quotient of [tex]\( 5x - 3 \)[/tex] and a remainder of [tex]\( 7 \)[/tex].
Final answer:
[tex]\[ \boxed{5x - 3 + \frac{7}{2x^2 + 5x + 6}} \][/tex]
1. Set up the division: Write the dividend [tex]\(10x^3 + 19x^2 + 15x - 11\)[/tex] and the divisor [tex]\(2x^2 + 5x + 6\)[/tex].
2. Divide the leading terms: Divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{10x^3}{2x^2} = 5x \][/tex]
This gives us the first term of the quotient, [tex]\(5x\)[/tex].
3. Multiply and subtract: Multiply the entire divisor [tex]\(2x^2 + 5x + 6\)[/tex] by [tex]\(5x\)[/tex] and subtract it from the original dividend:
[tex]\[ (10x^3 + 19x^2 + 15x - 11) - (5x \cdot (2x^2 + 5x + 6)) = (10x^3 + 19x^2 + 15x - 11) - (10x^3 + 25x^2 + 30x) \][/tex]
[tex]\[ = (10x^3 + 19x^2 + 15x - 11) - 10x^3 - 25x^2 - 30x = -6x^2 - 15x - 11 \][/tex]
4. Repeat the process: Now we repeat the division with the new polynomial [tex]\(-6x^2 - 15x - 11\)[/tex]:
[tex]\[ \frac{-6x^2}{2x^2} = -3 \][/tex]
This gives us the next term of the quotient, [tex]\(-3\)[/tex].
5. Multiply and subtract again: Multiply the entire divisor by [tex]\(-3\)[/tex] and subtract from the result of the previous subtraction:
[tex]\[ (-6x^2 - 15x - 11) - (-3 \cdot (2x^2 + 5x + 6)) = (-6x^2 - 15x - 11) - (-6x^2 - 15x - 18) \][/tex]
[tex]\[ = (-6x^2 - 15x - 11) - -6x^2 - -15x - -18 = ( - 11 +18 ) = 7 \][/tex]
6. Write the result: Now we have:
[tex]\[ Quotient: 5x - 3 \][/tex]
[tex]\[ Remainder: 7 \][/tex]
So, the division of [tex]\(10x^3 + 19x^2 + 15x - 11\)[/tex] by [tex]\(2x^2 + 5x + 6\)[/tex] yields a quotient of [tex]\( 5x - 3 \)[/tex] and a remainder of [tex]\( 7 \)[/tex].
Final answer:
[tex]\[ \boxed{5x - 3 + \frac{7}{2x^2 + 5x + 6}} \][/tex]