What is the slope of the line that contains these points?

\begin{tabular}{cccc}
[tex]$x$[/tex] & 39 & 40 & 41 & 42 \\
\hline
[tex]$y$[/tex] & 36 & 29 & 22 & 15
\end{tabular}

Slope: [tex]$\square$[/tex]



Answer :

To find the slope of the line that contains the given points [tex]\((39, 36)\)[/tex], [tex]\((40, 29)\)[/tex], [tex]\((41, 22)\)[/tex], and [tex]\((42, 15)\)[/tex], we need to use the formula for the slope [tex]\((m)\)[/tex] between any two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

We will use the first point [tex]\((39, 36)\)[/tex] and the last point [tex]\((42, 15)\)[/tex] to calculate the slope.

1. Determine the change in [tex]\(x\)[/tex]:
[tex]\[ \Delta x = x_2 - x_1 = 42 - 39 = 3 \][/tex]

2. Determine the change in [tex]\(y\)[/tex]:
[tex]\[ \Delta y = y_2 - y_1 = 15 - 36 = -21 \][/tex]

3. Now, calculate the slope:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{-21}{3} = -7.0 \][/tex]

Therefore, the slope of the line that contains the given points is:

[tex]\[ \boxed{-7.0} \][/tex]