Which ordered pair is a solution of the equation?

[tex]\[ 7x - 5 = 4y - 6 \][/tex]

Choose 1 answer:
A. Only [tex]\((2,4)\)[/tex]
B. Only [tex]\((3,6)\)[/tex]
C. Both [tex]\((2,4)\)[/tex] and [tex]\((3,6)\)[/tex]
D. Neither



Answer :

To determine which ordered pair is a solution to the equation [tex]\( 7x - 5 = 4y - 6 \)[/tex], we need to check both pairs [tex]\((2, 4)\)[/tex] and [tex]\((3, 6)\)[/tex] by substituting these values into the equation and verifying if the equation holds true for each pair.

### Check the ordered pair [tex]\((2, 4)\)[/tex]

Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 4 \)[/tex] into the equation [tex]\( 7x - 5 = 4y - 6 \)[/tex]:

1. Calculate [tex]\( 7x - 5 \)[/tex]:
[tex]\[ 7(2) - 5 = 14 - 5 = 9 \][/tex]

2. Calculate [tex]\( 4y - 6 \)[/tex]:
[tex]\[ 4(4) - 6 = 16 - 6 = 10 \][/tex]

3. Compare the two results:
[tex]\[ 9 \neq 10 \][/tex]

Thus, the ordered pair [tex]\((2, 4)\)[/tex] is not a solution to the equation because both sides of the equation are not equal when these values are substituted.

### Check the ordered pair [tex]\((3, 6)\)[/tex]

Substitute [tex]\( x = 3 \)[/tex] and [tex]\( y = 6 \)[/tex] into the equation [tex]\( 7x - 5 = 4y - 6 \)[/tex]:

1. Calculate [tex]\( 7x - 5 \)[/tex]:
[tex]\[ 7(3) - 5 = 21 - 5 = 16 \][/tex]

2. Calculate [tex]\( 4y - 6 \)[/tex]:
[tex]\[ 4(6) - 6 = 24 - 6 = 18 \][/tex]

3. Compare the two results:
[tex]\[ 16 \neq 18 \][/tex]

Thus, the ordered pair [tex]\((3, 6)\)[/tex] is not a solution to the equation because both sides of the equation are not equal when these values are substituted.

### Conclusion

Since neither [tex]\((2, 4)\)[/tex] nor [tex]\((3, 6)\)[/tex] satisfies the equation [tex]\( 7x - 5 = 4y - 6 \)[/tex],

The correct answer is:
(D) Neither