Simplify [tex]\(\frac{4 a^2\left(a^3\right)}{16 b\left(b^2\right)}\)[/tex]:

A. [tex]\(\frac{4 a^5}{16 b^3}\)[/tex]

B. [tex]\(\frac{a^5}{4 b^3}\)[/tex]

C. [tex]\(\frac{a^6}{4 b^3}\)[/tex]

D. [tex]\(\frac{a^6}{14 b^2}\)[/tex]



Answer :

To simplify the given expression [tex]\(\frac{4a^2(a^3)}{16b(b^2)}\)[/tex], let's proceed step-by-step:

1. Expand the numerator and the denominator:

The numerator is:
[tex]\[ 4a^2(a^3) = 4a^{2+3} = 4a^5 \][/tex]

The denominator is:
[tex]\[ 16b(b^2) = 16b^{1+2} = 16b^3 \][/tex]

So, the expression now becomes:
[tex]\[ \frac{4a^5}{16b^3} \][/tex]

2. Simplify the constants:

Divide both the numerator and the denominator by the common factor 4:
[tex]\[ \frac{4a^5}{16b^3} = \frac{4 \div 4 \cdot a^5}{16 \div 4 \cdot b^3} = \frac{a^5}{4b^3} \][/tex]

Thus, the simplified expression is:
[tex]\[ \frac{a^5}{4b^3} \][/tex]

To summarize:

- We expanded the powers in the numerator and the denominator.
- We combined the like terms.
- We simplified by dividing the numerator and the denominator by the greatest common factor, which is 4.

So the correct simplified form of the given expression is:
[tex]\[ \frac{a^5}{4b^3} \][/tex]