Answer :
Let's carefully look at each expression you've provided and evaluate it when [tex]\( n = 1.1 \)[/tex].
1. The sum of forty-five and a number [tex]\( n \)[/tex]:
To find the sum of forty-five and [tex]\( n \)[/tex], we use the expression [tex]\( 45 + n \)[/tex]. When [tex]\( n = 1.1 \)[/tex], we get:
[tex]\[ 45 + 1.1 = 46.1 \][/tex]
Thus, the value is 46.1.
2. Expression [tex]\( 45n \)[/tex]:
This expression involves multiplying 45 by the number [tex]\( n \)[/tex]. When [tex]\( n = 1.1 \)[/tex], we get:
[tex]\[ 45 \times 1.1 = 49.5 \][/tex]
Thus, the value is 49.5.
3. Expression [tex]\( 45 - n \)[/tex]:
This expression involves subtracting [tex]\( n \)[/tex] from 45. When [tex]\( n = 1.1 \)[/tex], we get:
[tex]\[ 45 - 1.1 = 43.9 \][/tex]
Thus, the value is 43.9.
4. Expression [tex]\( \frac{n}{45} \)[/tex]:
This expression involves dividing [tex]\( n \)[/tex] by 45. When [tex]\( n = 1.1 \)[/tex], we get:
[tex]\[ \frac{1.1}{45} = 0.024 \][/tex]
Thus, the value is 0.024.
Let's summarize the evaluations:
- The sum of forty-five and [tex]\( n \)[/tex], [tex]\( 45 + n \)[/tex], when [tex]\( n = 1.1 \)[/tex], is [tex]\( 46.1 \)[/tex].
- The expression [tex]\( 45n \)[/tex], when [tex]\( n = 1.1 \)[/tex], is [tex]\( 49.5 \)[/tex].
- The expression [tex]\( 45 - n \)[/tex], when [tex]\( n = 1.1 \)[/tex], is [tex]\( 43.9 \)[/tex].
- The expression [tex]\( \frac{n}{45} \)[/tex], when [tex]\( n = 1.1 \)[/tex], is [tex]\( 0.024 \)[/tex].
Therefore, the correct evaluations are:
- [tex]\(45 + n = 46.1\)[/tex]
- [tex]\(45n = 49.5\)[/tex]
- [tex]\(45 - n = 43.9\)[/tex]
- [tex]\(\frac{n}{45} = 0.024\)[/tex]
1. The sum of forty-five and a number [tex]\( n \)[/tex]:
To find the sum of forty-five and [tex]\( n \)[/tex], we use the expression [tex]\( 45 + n \)[/tex]. When [tex]\( n = 1.1 \)[/tex], we get:
[tex]\[ 45 + 1.1 = 46.1 \][/tex]
Thus, the value is 46.1.
2. Expression [tex]\( 45n \)[/tex]:
This expression involves multiplying 45 by the number [tex]\( n \)[/tex]. When [tex]\( n = 1.1 \)[/tex], we get:
[tex]\[ 45 \times 1.1 = 49.5 \][/tex]
Thus, the value is 49.5.
3. Expression [tex]\( 45 - n \)[/tex]:
This expression involves subtracting [tex]\( n \)[/tex] from 45. When [tex]\( n = 1.1 \)[/tex], we get:
[tex]\[ 45 - 1.1 = 43.9 \][/tex]
Thus, the value is 43.9.
4. Expression [tex]\( \frac{n}{45} \)[/tex]:
This expression involves dividing [tex]\( n \)[/tex] by 45. When [tex]\( n = 1.1 \)[/tex], we get:
[tex]\[ \frac{1.1}{45} = 0.024 \][/tex]
Thus, the value is 0.024.
Let's summarize the evaluations:
- The sum of forty-five and [tex]\( n \)[/tex], [tex]\( 45 + n \)[/tex], when [tex]\( n = 1.1 \)[/tex], is [tex]\( 46.1 \)[/tex].
- The expression [tex]\( 45n \)[/tex], when [tex]\( n = 1.1 \)[/tex], is [tex]\( 49.5 \)[/tex].
- The expression [tex]\( 45 - n \)[/tex], when [tex]\( n = 1.1 \)[/tex], is [tex]\( 43.9 \)[/tex].
- The expression [tex]\( \frac{n}{45} \)[/tex], when [tex]\( n = 1.1 \)[/tex], is [tex]\( 0.024 \)[/tex].
Therefore, the correct evaluations are:
- [tex]\(45 + n = 46.1\)[/tex]
- [tex]\(45n = 49.5\)[/tex]
- [tex]\(45 - n = 43.9\)[/tex]
- [tex]\(\frac{n}{45} = 0.024\)[/tex]