[tex]\[
\begin{array}{l}
y = 5x + 2 \\
3x = -y + 10
\end{array}
\][/tex]

What is the solution to the system of equations?

A. [tex]$(-4, -18)$[/tex]

B. [tex]$(-18, -4)$[/tex]

C. [tex]$(7, 1)$[/tex]

D. [tex]$(1, 7)$[/tex]



Answer :

Certainly! Let's find the solution to the given system of linear equations:

[tex]\[ \begin{cases} y = 5x + 2 \\ 3x = -y + 10 \end{cases} \][/tex]

To solve this system, we will use the method of substitution. Here's the step-by-step solution:

1. Substitute [tex]\( y \)[/tex] from the first equation into the second equation:

Given:
[tex]\[ y = 5x + 2 \][/tex]

Substitute [tex]\( y \)[/tex] into the second equation:
[tex]\[ 3x = - (5x + 2) + 10 \][/tex]

2. Simplify the equation:

[tex]\[ 3x = -5x - 2 + 10 \][/tex]

3. Combine like terms:

[tex]\[ 3x = -5x + 8 \][/tex]

4. Add [tex]\( 5x \)[/tex] to both sides of the equation:

[tex]\[ 3x + 5x = 8 \][/tex]
[tex]\[ 8x = 8 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{8}{8} \][/tex]
[tex]\[ x = 1 \][/tex]

6. Substitute [tex]\( x \)[/tex] back into the first equation to find [tex]\( y \)[/tex]:

[tex]\[ y = 5x + 2 \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 5(1) + 2 \][/tex]
[tex]\[ y = 5 + 2 \][/tex]
[tex]\[ y = 7 \][/tex]

Therefore, the solution to the system of equations is:

[tex]\[ (x, y) = (1, 7) \][/tex]

Among the given choices, the correct one is:

[tex]\((1, 7)\)[/tex]