Answer :
Certainly! Let's find the solution to the given system of linear equations:
[tex]\[ \begin{cases} y = 5x + 2 \\ 3x = -y + 10 \end{cases} \][/tex]
To solve this system, we will use the method of substitution. Here's the step-by-step solution:
1. Substitute [tex]\( y \)[/tex] from the first equation into the second equation:
Given:
[tex]\[ y = 5x + 2 \][/tex]
Substitute [tex]\( y \)[/tex] into the second equation:
[tex]\[ 3x = - (5x + 2) + 10 \][/tex]
2. Simplify the equation:
[tex]\[ 3x = -5x - 2 + 10 \][/tex]
3. Combine like terms:
[tex]\[ 3x = -5x + 8 \][/tex]
4. Add [tex]\( 5x \)[/tex] to both sides of the equation:
[tex]\[ 3x + 5x = 8 \][/tex]
[tex]\[ 8x = 8 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{8}{8} \][/tex]
[tex]\[ x = 1 \][/tex]
6. Substitute [tex]\( x \)[/tex] back into the first equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 5x + 2 \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 5(1) + 2 \][/tex]
[tex]\[ y = 5 + 2 \][/tex]
[tex]\[ y = 7 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (1, 7) \][/tex]
Among the given choices, the correct one is:
[tex]\((1, 7)\)[/tex]
[tex]\[ \begin{cases} y = 5x + 2 \\ 3x = -y + 10 \end{cases} \][/tex]
To solve this system, we will use the method of substitution. Here's the step-by-step solution:
1. Substitute [tex]\( y \)[/tex] from the first equation into the second equation:
Given:
[tex]\[ y = 5x + 2 \][/tex]
Substitute [tex]\( y \)[/tex] into the second equation:
[tex]\[ 3x = - (5x + 2) + 10 \][/tex]
2. Simplify the equation:
[tex]\[ 3x = -5x - 2 + 10 \][/tex]
3. Combine like terms:
[tex]\[ 3x = -5x + 8 \][/tex]
4. Add [tex]\( 5x \)[/tex] to both sides of the equation:
[tex]\[ 3x + 5x = 8 \][/tex]
[tex]\[ 8x = 8 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{8}{8} \][/tex]
[tex]\[ x = 1 \][/tex]
6. Substitute [tex]\( x \)[/tex] back into the first equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 5x + 2 \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 5(1) + 2 \][/tex]
[tex]\[ y = 5 + 2 \][/tex]
[tex]\[ y = 7 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (1, 7) \][/tex]
Among the given choices, the correct one is:
[tex]\((1, 7)\)[/tex]