What are the solution(s) of the given equation?

[tex]\[ 2x^2 = -18 \][/tex]

A. [tex]\( x = -3 \)[/tex]

B. [tex]\( x = \pm 3i \)[/tex]

C. [tex]\( x = -3i \)[/tex]

D. [tex]\( x = \pm 3 \)[/tex]



Answer :

Let's solve the given equation step-by-step.

The given equation is:

[tex]\[ 2x^2 = -18 \][/tex]

Step 1: Simplify the equation by dividing both sides by 2:

[tex]\[ \frac{2x^2}{2} = \frac{-18}{2} \][/tex]

This simplifies to:

[tex]\[ x^2 = -9 \][/tex]

Step 2: Solve for [tex]\( x \)[/tex]:

We need to find the value(s) of [tex]\( x \)[/tex] such that [tex]\( x^2 = -9 \)[/tex]. To do this, we take the square root of both sides.

Note that taking the square root of a negative number gives us an imaginary number:

[tex]\[ x = \pm \sqrt{-9} \][/tex]

We know that the square root of [tex]\(-9\)[/tex] can be written using imaginary numbers as:

[tex]\[ \sqrt{-9} = 3i \][/tex]

Therefore, the solutions for [tex]\( x \)[/tex] are:

[tex]\[ x = \pm 3i \][/tex]

So, the correct solutions are:

[tex]\[ x = \pm 3i \][/tex]

From the options given:

1. [tex]\( x = -3 \)[/tex]
2. [tex]\( x = \pm 3i \)[/tex]
3. [tex]\( x = -3i \)[/tex]
4. [tex]\( x = \pm 3 \)[/tex]

The correct answer is:

[tex]\[ x = \pm 3i \][/tex]