Answer :

To find the distance between the points [tex]\( A(-2, -4) \)[/tex] and [tex]\( B(7, -1) \)[/tex], we use the distance formula, which is given by:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Here, [tex]\((x_1, y_1)\)[/tex] are the coordinates of point [tex]\( A \)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of point [tex]\( B \)[/tex].

Substitute the coordinates [tex]\( A(-2, -4) \)[/tex] and [tex]\( B(7, -1) \)[/tex] into the formula:

1. Compute the difference in the x-coordinates:
[tex]\[ x_2 - x_1 = 7 - (-2) = 7 + 2 = 9 \][/tex]

2. Compute the difference in the y-coordinates:
[tex]\[ y_2 - y_1 = -1 - (-4) = -1 + 4 = 3 \][/tex]

3. Square these differences:
[tex]\[ (x_2 - x_1)^2 = 9^2 = 81 \][/tex]
[tex]\[ (y_2 - y_1)^2 = 3^2 = 9 \][/tex]

4. Add these squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 81 + 9 = 90 \][/tex]

5. Take the square root of the sum to find the distance:
[tex]\[ d = \sqrt{90} \][/tex]

The result from calculation shows that the distance [tex]\(d\)[/tex] is approximately:

[tex]\[ d \approx 9.486832980505138 \][/tex]

Therefore, the distance between the points [tex]\( A(-2, -4) \)[/tex] and [tex]\( B(7, -1) \)[/tex] is approximately [tex]\( 9.49 \)[/tex] units.